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Many recent efforts in computational modeling of macro-scale

brain dynamics have begun to take a data-driven approach by

incorporating structural and/or functional information derived

from subject data. Here, we discuss recent work using

personalized brain network models to study structure–function

relationships in human brains. We describe the steps

necessary to build such models and show how this

computational approach can provide previously unobtainable

information through the ability to perform virtual experiments.

Finally, we present examples of how personalized brain

network models can be used to gain insight into the effects of

local stimulation and improve surgical outcomes in epilepsy.
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Introduction
The brain is an inherently dynamical system, driven by an

underlying complex network of connections, and much

work has focused on the ability to relate brain activity and

function to the underlying structure [1]. Understanding

this important link is a key goal of Network Neurosci-

ence — a rapidly evolving field that relies on complex

network theory to model and study the brain across

multiple scales and modalities of interactions [2��]. In

this framework, network nodes are chosen depending

upon the scale of interest and scientific question, and

could range from neurons to brain regions. Network edges

can represent structural connections (anatomical links;

structural connectivity) or functional relationships (statis-

tical relationships; functional connectivity) [3,4]. When

using network theory to model the brain, many important

questions can be asked. What is the relationship between

structural and functional connectivity? Do structure–

function relationships change over task, time, or disease

state? How sensitive are the observed patterns of brain

activity to small differences in the underlying structural

connectivity?

Studies have shown that while certain features of brain

network structure are conserved across individuals, dif-

ferences in network structure can be observed across

people [5,6,7�]. Individual differences in human task

performance [8�,9] and differences between healthy

and diseased individuals [10,11] have also been linked

to differences in the underlying structural connectivity of

the brain. These findings have motivated the formulation

of data-driven computational models of brain activity (see

Box 1). These personalized brain network models (BNM)

combine an individual’s structural connectivity with

mathematical equations of neuronal activity in order to

produce a subject-specific simulation of spatiotemporal

brain activity. Due to recent advances in non-invasive

imaging techniques to measure macro-scale structural

connectivity of human brains [12,13], such models have

gained popularity to study large-scale brain dynamics.

These computational models are sensitive to the under-

lying network structure [14�], and offer many advantages

when investigating structure–function relationships. For

example, one can perform in silico experiments that

perturb the underlying brain structure such as lesioning

(removing edges [15,16]) or resection (removing nodes

[17,18]) and investigate the effects of such perturbations

on simulated brain activity. Alternatively, one can impact

local brain dynamics through modifications to the math-

ematical equations such as applying stimulation or modi-

fying brain excitability and study the effects of these local

perturbations on global brain function [14�,19��]. Impor-

tantly, due to the specificity of the model to a given

individual, one can study the differential impact of similar

perturbations across a cohort of individuals. Thus, this

approach has the potential to lead to the development of

personalized treatment strategies to combat disease or

enhance human performance [20].

In this review, we summarize the basic steps involved in

creating personalized BNM and provide examples from

recent studies within the last 2–3 years that have used this
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methodology to gain insight in to brain structure–function

relationships. We particularly highlight applications of

this approach that study the effects of regional brain

stimulation on global brain dynamics or use computa-

tional brain models to predict surgical outcomes in

epilepsy.

Building data-driven brain network models
Building personalized BNM involves making decisions

regarding the scale of the network, the type of underlying

connectivity, and the level of neurophysiological com-

plexity of the mathematical equations that constitute the

model (see Figure 1). Generally, human brain modeling

involves working at the macroscopic level where network

nodes are either sensors (e.g., EEG data) or brain regions

(e.g., imaging data) [21]. Brain regions are defined using a

parcellation scheme that is based on one of many differ-

ent available atlases [22]. Each atlas divides the brain into

multiple spatial regions, but the location and total number

of regions varies widely between atlases. Due to this

variability, some work has investigated the impact of

the choice or scale of atlas used for the parcellation. While

the proper choice of scale depends on many factors, under

certain sets of assumptions, it has been shown that an atlas

with approximately 140 brain regions produces good

agreement with experimental data [23].

Next, one needs to determine how network edges are

defined. The modeling framework is based on the

assumption that subject-specific structural connectivity

data is available. The first modeling studies used a con-

nectome derived from tract tracing studies in primates

[24], but in order to model human brain dynamics, esti-

mates of white matter tracts between brain regions

obtained from diffusion weighted imaging data are

instead used [25]. While some studies have used struc-

tural networks that represent data averaged across a

cohort of individuals [26,27], using subject-specific con-

nectomes increases the specificity of the model

[19��,25,28] and is preferable if available.

In certain cases where subject-specific structural network

data is not available, researchers have instead substituted

functional for structural connectivity. However, it is

important to remember that the mathematical assump-

tion of the model is that the connections represent

structural (not functional) coupling. While it has been

shown that structural and functional networks are corre-

lated [25,29], these two types of connectivity remain

fundamentally different [30]. Nevertheless, assessing

brain network model connectivity from functional data

can still be shown to produce predictive results [31�] and

can therefore be a useful tool, but one must be careful in

the interpretation of the findings.

Finally, one must choose the set of mathematical equa-

tions that represent regional brain activity. In the simplest

case, Kuramoto phase oscillators (simplistic oscillators

commonly used in dynamical systems theory [32]) have

been used to model neural activity. However, more

sophisticated approaches instead choose some biologi-

cally informed neural mass model. See the excellent

review by Breakspear [33��] for a detailed discussion

on the choices of dynamical equations. If one’s goal is

to be able to accentuate the effect of the underlying

structural connectivity, each brain region is generally

governed by the same set of equations and same param-

eters. However, to more accurately model brain activity,

one can modify parameters of the equations governing

regional brain dynamics. This approach is particularly

suitable to model changes related to brain states such

as sleep vs. wake [26,27], or disease states such as epilepsy

[19��], and is becoming increasingly used to create models

that capture subject specific differences in both structure

and dynamics.
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Box 1 Personalized brain network models (BNM)

‘Everything should be made as simple as possible, but not

simpler’ — Albert Einstein.

Network neuroscience seeks to understand the organization of the

brain using tools from complex network theory, applied across

multiple scales and modalities. Given the ongoing experimental

advances in non-invasive recording techniques, it is now possible to

combine high quality structural brain data with neurophysiological

information to create data-driven computational models of brain

activity. These personalized BNM simulate brain dynamics using

biologically inspired mathematical equations that model regional

activity and are coupled through the observed brain structure.

Incorporating personal data into the structure and dynamics of the

model involves making multiple assumptions and choices that are

driven by the question at hand. The flexibility associated with the

model design makes it useful for performing in silico experiments

across a diverse range of applications, but also implies that one must

be cautious when interpreting model predictions and/or making

generalizations.

Applications:

Personalized BNM can

� be tuned to produce dynamics that mimic the resting state activity

patterns.

� predict the effect of targeted stimulation.

� be perturbed to study the impact of brain lesions.

� provide seizure onset probabilities and inform surgical outcomes.

Limitations:

When using macro-scale computational models, one must also keep

in mind the underlying assumptions and limitations. These models

� are often optimized based on the scientific question at hand and

are not always generalizable.

� do not necessarily produce waveforms that depict realistic brain

activity.

� can provide predictive outcomes but might lack many neurophy-

siological details and/or mechanistic explanations.
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