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Phasic dopamine responses are thought to encode a

prediction-error signal consistent with model-free

reinforcement learning theories. However, a number of recent

findings highlight the influence of model-based computations

on dopamine responses, and suggest that dopamine

prediction errors reflect more dimensions of an expected

outcome than scalar reward value. Here, we review a selection

of these recent results and discuss the implications and

complications of model-based predictions for computational

theories of dopamine and learning.
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Introduction
The striking correspondence between the phasic

responses of midbrain dopamine neurons and the tempo-

ral-difference reward prediction error posited by rein-

forcement-learning theory is by now well established

[1–5]. According to this theory, dopamine neurons broad-

cast a prediction error — the difference between the

learned predictive value of the current state, signaled

by cues or features of the environment, and the sum of the

current reward and the value of the next state. Central to

the normative grounding of temporal-difference rein-

forcement learning (TDRL) is the definition of ‘value’

as the expected sum of future (possibly discounted)

rewards [6], from whence the learning rule can be derived

directly. The algorithm also provides a simple way to

learn such values using prediction errors, which is thought

to be implemented in the brain through dopamine-

modulated plasticity in corticostriatal synapses [7,8]

(Figure 1, left). This theory provides a parsimonious

account of a number of features of dopamine responses

in a range of learning tasks [9–12].

Are model-free dopamine prediction errors a
red herring?
A core tenet of TDRL is that it is ‘model-free’: learned

state values are aggregate, scalar representations of total

future expected reward, in some common currency [1,13].

That is, the value of a state is a quantitative summary of

future reward amount, irrespective of either the specific

form of the expected reward (e.g., water, food, a combi-

nation of the two), or the sequence of future states

through which it will be obtained (e.g., will water be

presented before or after food). Critically, model-free

TDRL assigns these summed values to temporally-

defined states; accordingly, the algorithm binds together

predictions about the amount of reward and the expected

time of delivery (Figure 1). In many studies, dopamine

signals appear to reflect such temporally-precise, unitary

value expectations, which also correlate with conditioned

responding and choice preferences [14,15]. However,

little work has tested this strong hypothesis directly,

by, for instance, having a single cue predict several

rewards of different types within a single trial, or by

testing the effects of changes in type of reward on dopa-

mine signaling, while keeping the reward value constant.

Another important feature of model-free learning (includ-

ing TDRL) is that it posits that scalar state values are

accrued solely through experiencing the relationship

between the current state and the (possibly rewarded)

state that follows [6,16]. That is, state values are learned

through experience and ‘cached’ for future use. This is in

contrast to model-based decision making [17], where

values are computed anew each time a state is encoun-

tered by mentally simulating possibly distant futures

using a learned internal ‘world model’, which captures

the sequences of transitions between non-adjacent states

and their associated rewards (but see below for some more

nuanced distinctions).

Although phasic dopamine signals have predominantly

been interpreted as model-free temporal difference pre-

diction errors, a growing number of studies leveraging

complex behavioral tasks, alongside novel optogenetic

and imaging techniques, are revealing an increasingly

detailed picture of dopamine reward prediction errors

during learning, and the multiple dimensions of reward

prediction on which they are based. Intriguingly, several

of these studies have demonstrated a significant degree of
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heterogeneity in dopaminergic responses during learning,

suggesting greater complexity in these signals than pre-

viously appreciated. Below we review evidence from

these recent studies, asking what is the nature of dopa-

mine signals? Do they reflect an aggregate (scalar) error,

or a vector-based signal that includes not only the mag-

nitude of deviation from predictions, but also the identity

of the deviation (did I get more food than expected, or

water instead of food)? And how might these signals be

incorporated into learning algorithms implemented

throughout the brain?

Temporal representation and dopamine
One notable property of dopamine prediction errors is

that they are temporally precise: if an expected reward is

omitted, the phasic decrease in dopamine neuron activity

appears just after the time the reward would have

occurred [2]. It is this phenomenon that inspired the

TDRL algorithm, which models such temporally precise

predictions by postulating sequences of time-point states

that are triggered by a stimulus (known as the ‘complete

serial compound,’ CSC stimulus representation, or

‘tapped delay line’; Figure 1), each of which separately

accrues value through experience [6]. However, when a

reward is delivered unexpectedly early, dopamine neu-

rons do not display a phasic decrease in activity at the

original expected time of reward, as would be implied by

the CSC, in which a prediction error updates the value of

the current, and not subsequent, timepoint states [18,19].

Reset mechanisms, in which reward delivery terminates

the CSC representation, have been proposed to address

this [19], but other challenges suggest that the CSC is

perhaps not as viable an explanation for learned timing.

Specifically, prediction errors are only slightly enhanced

to temporally variable rewards, suggesting that under

some conditions reward predictions may have low
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Multiple dimensions of prediction in dopamine prediction errors. Consider a simple task in which a brief presentation of a light cue is repeatedly

followed by a drop of vanilla milk after some fixed delay (middle). What would happen on a trial in which the light is followed by a drop of equally-

preferred chocolate milk after a shorter delay? Model-free TDRL with a complete serial compound stimulus representation proposes that the cue

triggers a discrete sequence of activity that represents sequential time points after the presentation of the cue (left; a number of neurons are

depicted horizontally; their activity at different timepoints is portrayed vertically). At each timepoint, summation of this weighted representation

produces a scalar estimate of future value (V), which dopamine neurons (DA) compare to obtained reward to compute a prediction error signal.

The prediction error is then broadcast widely (red) and used to modify the weights for neurons that were recently active (circles on arrows). When

an unexpectedly early, chocolate-flavored reward is delivered, the prediction error signals the difference in time-discounted value, and modifies

the weights for the part of the representation that is active when the prediction error is signaled. By contrast, we propose that dopamine neurons

have access to (and maybe aid in learning) dimensions of prediction other than scalar value, and these are used for computation and signaling of

prediction errors (right). For example, after the presentation of the cue, multiple features of the predicted next event (in this case, a liquid reward)

may be represented by (perhaps overlapping) populations of neurons through time (color gradient), including the predicted amount (e.g., one

drop), the delay to reward delivery (it will arrive after several seconds) and the flavor of the reward (vanilla milk). At the time of reward delivery,

violations of the prediction along any of these dimensions may elicit a phasic response from dopamine neurons, though different neurons may be

specialized for prediction errors corresponding to different dimensions. In this case, at the early presentation of a drop of chocolate milk,

prediction errors are elicited for the timing of reward delivery as well as for flavor (red) but no prediction error arises for amount (black).
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