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A B S T R A C T

Background: A reliable inference of networks from data is of key interest in the Neurosciences. Several methods
have been suggested in the literature to reliably determine links in a network. To decide about the presence of
links, these techniques rely on statistical inference, typically controlling the number of false positives, paying
little attention to false negatives.
New method: In this paper, by means of a comprehensive simulation study, we analyse the influence of false
positive and false negative conclusions about the presence or absence of links in a network on the network
topology. We show that different values to balance false positive and false negative conclusions about links
should be used in order to reliably estimate network characteristics. We propose to run careful simulation studies
prior to making potentially erroneous conclusion about the network topology.
Results: Our analysis shows that optimal values to balance false positive and false negative conclusions about
links depend on the network topology and characteristic of interest.
Comparison with existing methods: Existing methods rely on a choice of the rate for false positive conclusions.
They aim to be sure about individual links rather than the entire network. The rate of false negative conclusions
is typically not investigated.
Conclusions: Our investigation shows that the balance of false positive and false negative conclusions about links
in a network has to be tuned for any network topology that is to be estimated. Moreover, within the same
network topology, the results are qualitatively the same for each network characteristic, but the actual values
leading to reliable estimates of the characteristics are different.

1. Introduction

Recently, many research groups have focused on the inference of
networks from data such as brain networks from observed electro-
encephalography or functional magnetic resonance imaging data
(Bullmore and Sporns, 2009; Pessoa, 2014; Petersen and Sporns, 2015;
Sporns et al., 2004). Particular emphasis is paid to the understanding of
the normal functioning, e.g. healthy brain, as well as malfunctioning,
e.g. diseased brain, of these networks. In the example of the brain, this
promises to disclose information about how the brain processes signals
and how alterations thereof cause specific diseases. A key hypothesis is
that important characteristics are not specific to individual subjects but
rather common in a given population. This is reflected by the fact that
brain networks, but also other networks, are typically classified into few
main prototypic networks (Newman, 2010, 2002), e.g., Erdös and Rényi
(1959, 1960), Watts (1999), Watts and Strogatz (1998), Barabási and
Albert (1999), Barabási and Pósfai (2016) networks. In our work we

consider binary undirected networks of these three topologies.
These prototypical models for networks are in turn characterised by

few parameters; procedures have been described to generate these
networks with their well-established characteristics (Newman, 2010,
2002). Some of the key characteristics are the node degree distribution,
the number of links, the global clustering coefficient, and the efficiency.
We considered these characteristics in our study since they are mean-
ingful in random networks and give a global description in large net-
works (Newman, 2010).

In the Inverse Problem, the challenge is to infer the network topology
from data. Two challenges are particularly relevant: (i) the reliable
inference of links in the network once the nodes have been fixed (Mader
et al., 2015; Zerenner et al., 2014) and (ii) the successful usage of the
characteristics above to uniquely determine the topology of network
(Bialonski et al., 2010, 2011).

The correct reconstruction of networks is hampered not only by
false conclusions about links due to statistical uncertainties, but also by
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unobserved processes (Elsegai et al., 2015; Guo et al., 2008; Ramb
et al., 2013) and noise contamination (Nalatore et al., 2007; Newbold,
1978; Sommerlade et al., 2015) to name just a few challenges of net-
work reconstruction. Classical statistical methods to estimate links in a
network aim to identify present links with high certainty, e.g. Jalili and
Knyazeva (2011), Quinn and Keough (2002), Devore (2011), Schinkel
et al. (2011), De Vico Fallani et al. (2014), Chavez et al. (2010), Honey
et al. (2007). Therefore, typically the rate of false positive conclusions
about links is chosen and consequences for the rate of false negative
conclusions about links are accepted. We investigate if these common
rules of false positive conclusions and false negative conclusions should
be modified to achieve a more reliable inference of the correct topology
of network. To this aim, we analyse their influence on the network
topology and characteristic.

The manuscript is structured as follows. An introduction to network
topologies and their characteristics is given in Section 2.1. Section 2.2
explains statistical errors and their influence on the network topology.
A simulation study in the case of Erdös–Rényi, Watts–Strogatz and
Barabási–Albert networks is presented in Section 3.

2. Materials and methods

In this section, network topologies and their characteristics are
described (Section 2.1). We summarise statistical errors and suggest a
distance measure to quantify their influence on the estimation of net-
work characteristics (Section 2.2).

2.1. Network characteristics

A network G is defined as a set of nodes with links between them. To
quantify the topology of networks, different network characteristics
have been described (Olbrich et al., 2010). Here, we consider four
network characteristics: node degree, number of links, global clustering
coefficient and efficiency. The node degree describes the number of
links of a node. For example, if the node v has k links attached, its node
degree is =d kv . Typically the node degree distribution is used to
characterise the entire network. The number of links refers to half of the
sum over the node degrees.

The global clustering coefficient describes how well the neighbours
of a node are connected. More precisely it measures the conditional
probability that given one node connected to other two nodes, these are
also connected to each other (Olbrich et al., 2010).

For two randomly selected nodes i, j in a network of n nodes, the
shortest path length ℓij measures the number of steps separating them if
the shortest path is taken. The average path length = ∑− ≠γ ℓn n i j

1
( 1) ij

gives a measure of the sparsity of the network. The efficiency
= ∑− ≠ϵ n n i j

1
( 1)

1
ℓij

is defined as the sum of the inverse of the shortest
paths lengths. Since the shortest path is infinitely long for unconnected
nodes, taking the average of the shortest path length in a network with
unconnected nodes is not meaningful. Efficiency for unconnected nodes
will be zero, therefore a meaningful network average of efficiency can
be obtained.

Different network topologies have been described (Newman, 2003).
Here, we investigate Erdös and Rényi (1959, 1960, Watts (1999), Watts
and Strogatz (1998) and Barabási and Albert (1999) networks, as key
examples of networks.

Erdös–Rényi networks are random networks in which each pair of
nodes is connected with independent probability pc. The probability
mass function of the node degree distribution of a Erdös–Rényi network

= = − − − −( )d k n
k p pℙ( ) 1 (1 )v c

k
c

n k1
(1)

is a binomial distribution (Newman, 2010).
Watts–Strogatz networks are also referred to as small-world net-

works. They are characterised by a high local connectivity with some

long-range “short-cuts”. Watts–Strogatz networks are built from a reg-
ular network with node degree 2c. Nodes are arranged on a circle;
therefore, each node has c nearest clockwise as well as c nearest
counterclockwise neighbours. With probability pr each link connecting
a node to one of its nearest neighbours is reconnected to another node
randomly chosen. The node degree distribution has probability mass
function
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in the assumption that n≫ c, (Menezes et al., 2017). Here, we study
Watts–Strogatz networks with c=2.

Barabási–Albert networks are so-called scale free networks. They
are constructed by adding nodes to an existing network. The degree of
the existing nodes influences the probability for a new link. Each new
node is connected to the network with a certain number b of links. The
probability for one of these b links to be formed with any existing node
is proportional the degree of that node. The node degree distribution
has probability mass function (Barabási and Pósfai, 2016)

= = +
+ +
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Note that Eq. (3) is of type = = −d k c kℙ( )v
c

1 2, where c1 and c2 are
constants, i.e., it follows a power law.

2.2. Inference reliability

In the Neurosciences different methods to identify nodes of a brain
network exist. For our purposes the method of identifying nodes is not
relevant. Therefore, we assume a fixed set of nodes. Once nodes have
been fixed, several methods have been suggested in the literature to
address the challenge of reliable inference of links in the network. To
determine the presence of links, these techniques usually rely on sta-
tistical inference (Jalili and Knyazeva, 2011; Quinn and Keough, 2002;
Devore, 2011; Schinkel et al., 2011; De Vico Fallani et al., 2014; Chavez
et al., 2010; Honey et al., 2007).

Two types of errors exist when making these statistical inferences:
(i) an absent link (C ) may be erroneously assumed to be present by the
method (CD), this is a false positive conclusion and referred to as a type I
error; (ii) a present link (C) may remain undetected (CD) by the method,
this is a false negative conclusion and referred to as a type II error. We
call =α C Cℙ( | )D the probability of a false positive conclusion and

=β C Cℙ( | )D the probability of a false negative conclusion. These two
probabilities (α and β) are related and cannot be fixed independently. A
standard choice is to set α=0.05 and neglect investigation of β,
focussing on reliably detecting individual links of the network.

Let G denote the true network. As a consequence of the choice of α
and thereby β, leading to a non-zero probability of detecting false po-
sitive and false negative links, the network we detect GD will be a
“mixture” of true links, false positive links, absent links and false ne-
gative links. Therefore, the number of detected links is generally dif-
ferent to the number of links of G. Also the node degree distribution, the
global clustering coefficient and the efficiency are in general biased. We
quantify the bias for each characteristic using a distance between dis-
tributions. Several distance measures are conceivable and have been
investigated; for sake of simplicity and to make the arguments clearer,
we only consider the distance

= −δ μ μ| |1 2 (4)

between two distributions, as the modulus of the difference of the
distribution's mean values. For example, the distance between the node
degree distribution of G, which has mean μG, and the node degree
distribution of GD, which has mean μGD, is = −δ μ μ| |G GD .

To investigate the relation between α and β numerically we simulate
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