Accepted Manuscript

Title: Massively parallel *C. elegans* tracking provides multi-dimensional fingerprints for phenotypic discovery

Authors: Michele Perni, Pavan K. Challa, Julius B. Kirkegaard, Ryan Limbocker, Mandy Koopman, Maarten C. Hardenberg, Pietro Sormanni, Thomas Müller, Kadi L. Saar, Lianne W.Y. Roode, Johnny Habchi, Giulia Vecchi, Nilumi W. Fernando, Samuel Casford, Ellen A.A. Nollen, Michele Vendruscolo, Christopher M. Dobson, Tuomas P.J. Knowles

PII: S0165-0270(18)30027-X

DOI: https://doi.org/10.1016/j.jneumeth.2018.02.005

Reference: NSM 7943

To appear in: Journal of Neuroscience Methods

Received date: 4-9-2017 Revised date: 27-1-2018 Accepted date: 11-2-2018

Please cite this article as: Perni Michele, Challa Pavan K, Kirkegaard Julius B, Limbocker Ryan, Koopman Mandy, Hardenberg Maarten C, Sormanni Pietro, Müller Thomas, Saar Kadi L, Roode Lianne WY, Habchi Johnny, Vecchi Giulia, Fernando Nilumi W, Casford Samuel, Nollen Ellen AA, Vendruscolo Michele, Dobson Christopher M, Knowles Tuomas P.J.Massively parallel C.elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. *Journal of Neuroscience Methods* https://doi.org/10.1016/j.jneumeth.2018.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Massively parallel *C. elegans* tracking provides multi-dimensional fingerprints for phenotypic discovery

Michele Perni¹⁺, Pavan K. Challa¹⁺, Julius B. Kirkegaard²⁺, Ryan Limbocker¹, Mandy Koopman³, Maarten C. Hardenberg³, Pietro Sormanni¹, Thomas Müller¹, Kadi L. Saar¹, Lianne W. Y. Roode¹, Johnny Habchi¹, Giulia Vecchi¹, Nilumi W. Fernando¹, Samuel Casford¹, Ellen A. A. Nollen³, Michele Vendruscolo^{1*}, Christopher M. Dobson^{1*} and Tuomas P. J. Knowles^{1*}

Highlights:

- The Wide Field-of-View Nematode Tracking Platform is a novel multiparametric tracking platform that can monitor more than 5.000 animals in parallel.
- The platform is optimised for extracting features important for characterising the behaviour of *C. elegans*, a widely used model organism in biomedical research.
- The platform provides a high power of detection and statistical power, allowing reliable detection of even small changes in worm behaviour and reducing the risk of false positive results.
- The capabilities of the platform are demonstrated by screening potential drug leads for neurodegenerative disorders such as Parkinson's and Alzheimer's disease.
- Full details are provided to build the platform, and open source codes are provided to analyse the resulting data, making it readily accessible to the community.

¹Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK

²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

³University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Aging, 9713 AV Groningen, The Netherlands.

⁺Those authors made equal contributions to this study

^{*}To whom correspondence should be addressed: mv245@cam.ac.uk, cmd44@cam.ac.uk, tpjk2@cam.ac.uk.

Download English Version:

https://daneshyari.com/en/article/8840266

Download Persian Version:

https://daneshyari.com/article/8840266

<u>Daneshyari.com</u>