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A B S T R A C T

Background: There is growing interest in ultra-high field magnetic resonance imaging (MRI) in cognitive and
clinical neuroscience studies. However, the benefits offered by higher field strength have not been evaluated in
terms of effective connectivity and dynamic causal modelling (DCM).
New method: In this study, we address the validity of DCM for 7T functional MRI data at two levels. First, we
evaluate the predictive validity of DCM estimates based upon 3T and 7T in terms of reproducibility. Second, we
assess improvements in the efficiency of DCM estimates at 7T, in terms of the entropy of the posterior dis-
tribution over model parameters (i.e., information gain).
Results: Using empirical data recorded during fist-closing movements with 3T and 7T fMRI, we found a high
reproducibility of average connectivity and condition-specific changes in connectivity – as quantified by the
intra-class correlation coefficient (ICC=0.862 and 0.936, respectively). Furthermore, we found that the pos-
terior entropy of 7T parameter estimates was substantially less than that of 3T parameter estimates; suggesting
the 7T data are more informative – and furnish more efficient estimates.
Compared with existing methods: In the framework of DCM, we treated field-dependent parameters for the BOLD
signal model as free parameters, to accommodate fMRI data at 3T and 7T. In addition, we made the resting blood
volume fraction a free parameter, because different brain regions can differ in their vascularization.
Conclusions: In this paper, we showed DCM enables one to infer changes in effective connectivity from 7T data
reliably and efficiently.

1. Introduction

Functional magnetic resonance imaging (fMRI) measures the blood
oxygenation level dependent (BOLD) signal as a reflection of neuronal
activity. The signal arises from magnetic susceptibility differences be-
tween deoxygenated blood in venous vessels and the surrounding tissue
(Ogawa et al., 1990). Intrinsic signal-to-noise ratio (SNR) and BOLD
signal contrast increase with field strength, which can be exploited to
improve spatial resolution (Yacoub et al., 2001). These and related
reasons have motivated an interest in using ultra-high field (7T and
above) MRI in cognitive and clinical neuroscience studies (Martino
et al., 2018).

Several studies have investigated the potential benefits of 7T MRI
for detecting and characterizing functional connectivity (Hale et al.,
2010; Newton et al., 2012; Vu et al., 2017). Specifically, Hale et al.
(2010) assessed the effects of increased contrast-to-noise ratio (CNR) –

at higher field strength – on estimates of functional connectivity. They
showed increased temporal correlation within the sensory motor and
default mode networks at 7T, compared to 3T. In addition, Newton
et al. (2012) and Vu et al. (2017) showed that improved spatial re-
solution reduced partial volume effects; allowing for more efficient
estimates of functional connectivity throughout the brain at 7T. How-
ever, to our knowledge, there have been no studies exploring how the
benefits offered by higher field strength influence estimates of effective
connectivity, defined as the (model-based) influence of one (neuronal)
system on another.

In this paper, we address the efficiency of dynamic causal modelling
(DCM) for 7T fMRI data. DCM is a method for inferring directed ef-
fective connectivity from brain imaging data, using Bayesian inference.
Specifically, DCM has been developed for estimating effective con-
nectivity from task-based and resting-state fMRI time series (Friston
et al., 2003, 2014, 2017). Validity and test-retest reliability of DCM
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estimates at 3T have been investigated by numerous studies (Schuyler
et al., 2010; Razi et al., 2015; Frassle et al., 2015; Rowe et al., 2010).
However, we do not know whether estimates of connectivity para-
meters are affected by the field strength, and how different field
strengths affect the accuracy of those estimates. This paper addresses
these issues by comparing neurodynamic parameters estimated from
DCM-3T and DCM-7T. We hypothesized that estimates of connectivity
and neural responses (induced and modulated by experimental input)
do not differ when the BOLD signal is acquired at higher field strengths,
since the underlying interactions between neuronal populations do not
change. However, the efficiency of these estimates should increase with
field strength; i.e., the posterior uncertainty should decrease with field
strength.

In brief, we address the effect of 7T data on DCM at two levels. First,
we establish the predictive validity of DCM estimates based upon 3T
and 7T in terms of reproducibility. DCM was applied to experimental
data acquired during fist-closing movements at 3T and 7T fMRI
(Grefkes et al., 2008; Frassle et al., 2015). Bayesian model averages
(Penny et al., 2010) of effective connectivity parameters were then
compared using the intra-class correlation coefficient (ICC) (Shrout and
Fleiss, 1979). To illustrate the consistency of the results under both field
strengths, we compared the neuronal and haemodynamic responses
(under 3T and 7T) based on the respective Bayesian model averages.
Second, given the higher intrinsic SNR at 7T over 3T, we ask whether
the 7T affords more efficient parameter estimates. To quantify the re-
duction in posterior uncertainty, we assess the negative entropy of the
(marginal) posterior distribution of DCM parameters from 7T and 3T
fMRI. We predicted that the posterior entropy of 7T parameters esti-
mates would be smaller, due to its improved spatial resolution and SNR.

This paper is structured as follows. In the Methods section, we first
review the generative model of fMRI data used in DCM, with a special
focus on the field strength-dependent components. We then illustrate
the basic procedures by applying the DCM to 3T and 7T data which
were acquired from the same subjects, under the same paradigm. In the
Results section, we present the results of our comparative analysis, in
terms of parameter estimates and the posterior confidence in these es-
timates at different field strengths. We conclude with a short discussion
of future extensions of the current work.

2. Methods

The generative model of fMRI data in DCM comprises three com-
ponents: (i) a neurodynamic model based on a network or graph of
connected regions or nodes, (ii) a haemodynamic model mapping
neuronal activity to haemodynamics at each node, and (iii) a BOLD
signal model mapping haemodynamics to the measured BOLD signal
(Buxton et al., 1998; Friston et al., 2000, 2003; Stephan et al., 2007).
The following subsections describe each of these components. In par-
ticular, we focus on priors for the field strength-dependent parameters
in the BOLD signal model; because physiological parameters in the
neurodynamic and haemodynamic models are not affected by the field
strength. This is followed by a description of image preprocessing,
standard general linear model (GLM) and DCM analyses of the em-
pirical data used in this study.

2.1. Neurodynamic model

In DCM, neurodynamics are described by the following differential
equation (Friston et al., 2003)
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where t indexes continuous time and the dot notation denotes a time
derivative. The entries in z correspond to neuronal activity in j = 1, …,

J regions, and u(i) is the i of M experimental inputs. An [J× J] matrix,
ℑ, denotes the effective connectivity between and within regions, and
an [J×M] matrix, C, denotes the extrinsic influence of inputs on re-
gional activity. The effective connectivity ℑ is further characterized by
an [J× J] matrix, A, that specifies which regions are connected in the
absence of experimental input, and an [J× J] matrix, Bi, that specifies
which of these average connections changes a result of input i. Usually,
the Bi parameters are of greatest interest – as these describe how con-
nections among brain regions respond to experimental manipulations.
A strong connectivity means the directed influence of one region on
another is manifest quickly or with a small time constant (Friston et al.,
2003). This means that effective connectivity is measured in rate con-
stants for hertz. Neuronal activity fluctuations in each region lead to
changes in haemodynamic responses that cause the observed BOLD
response (see below).

2.2. The haemodynamic model

The haemodynamic model involves a set of differential equations
modelling changes in four haemodynamic variables; including vasodi-
latory signal s, inflow fin, volume of the venous balloon v, and total
deoxyhemoglobin within the venous balloon q, normalized to their
values at rest (Buxton et al., 1998; Friston et al., 2000). Based on em-
pirical evidence DCM generally assumes a linear mapping between
neuronal activity and blood flow (Miller et al., 2001): neuronal activity
z causes an increase in an inducing signal s that drives the inflow
change fin (Friston et al., 2000):
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where κ is the rate of signal decay, and γ is the rate of autoregulatory
feedback by blood flow. This model includes negative feedback from
the blood flow fin on the inducing signal s.

This inflow change then drives changes in blood volume v, and
deoxyhemoglobin q (Buxton et al., 1998):
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where τ is the mean transit time that represents the average time it
takes to traverse the venous compartment, outflow fout is modeled as a
power of blood volume, α is Grubb’s exponent (Grubb et al., 1974), E is
oxygen extraction fraction, and ρ is the resting oxygen extraction
fraction. In Eq. (3), the rate of blood volume changes v̇ is modeled as
the difference between inflow and outflow from the venous compart-
ment with a time constant τ. The rate of deoxyhemoglobin changes q̇ is
modeled as the delivery of deoxyhemoglobin into the venous com-
partment, minus that expelled.

2.3. BOLD Signal Model

The BOLD signal is modeled as (Buxton et al., 1998; Stephan et al.,
2007):
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where V0 is the resting blood volume fraction, q and v are normalized
deoxyhemoglobin and blood volume content, respectively. The first and
second terms describe the extravascular and intravascular signal, and
the third describes the effect of changing the balance. The field-
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