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h  i g  h  l  i g  h  t  s

• We  investigated  limitations  of traditional  Canonical  Correlation  Analysis  (CCA),  and  considered  other  artefacts.
• We  introduced  a new  automatic  muscle-removal  approach  based  on  traditional  CCA  and the  spectral  slope  of  components.
• We  validated  the  effectiveness  of this  approach  using  EMG-free  data  from  subjects  that were  given  a neuromuscular  blockade.
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a  b  s  t  r  a  c  t

Background:  Contamination  of scalp  measurement  by  tonic  muscle  artefacts,  even in resting  positions,  is
an unavoidable  issue  in  EEG  recording.  These  artefacts  add significant  energy  to  the  recorded  signals,  par-
ticularly  at  high  frequencies.  To  enable  reliable  interpretation  of subcortical  brain  activity,  it  is  necessary
to detect  and  discard  this  contamination.
New  method:  We  introduce  a  new  automatic  muscle-removal  approach  based  on the  traditional  Blind
Source  Separation-Canonical  Correlation  Analysis  (BSS-CCA)  method  and  the  spectral  slope  of its  com-
ponents. We  show  that  CCA-based  muscle-removal  methods  can  discriminate  between  signals  with  high
correlation  coefficients  (brain,  mains  artefact)  and  signals  with  low  correlation  coefficients  (white  noise,
muscle).  We  also show  that  typical  BSS-CCA  components  are  not  purely  from  one  source,  but  are mixtures
from  multiple  sources,  limiting  the performance  of  BSS-CCA  in  artefact  removal.  We  demonstrate,  using
our paralysis  dataset,  improved  performance  using  BSS-CCA  followed  by spectral-slope  rejection.
Result:  This  muscle  removal  approach  can reduce  high-frequency  muscle  contamination  of  EEG,  especially
at  peripheral  channels,  while  preserving  steady-state  brain  responses  in  cognitive  tasks.
Comparison  with  existing  methods:  This  approach  is  automatic  and  can  be  applied  on  any  sample  of
data  easily.  The  results  show  its  performance  is comparable  with  the  ICA  method  in  removing  muscle
contamination  and  has significantly  lower  computational  complexity.
Conclusion:  We  identify  limitations  of the  traditional  BSS-CCA  approach  to  artefact  removal  in EEG,  pro-
pose  and test  an  extension  based  on spectral  slope  that  makes  it  automatic  and  improves  its  performance,
and  results  in  performance  comparable  to competitors  such  as  ICA-based  artefact  removal.
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1. Introduction

Electroencephalogram (EEG) is an important biological signal
reflecting electrical changes in networks of cortical and subcortical
neurons. It has an important role in brain disease diagnosis, brain
computer interfaces (BCI), and brain research (Vinhas et al., 2008;
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Zhang et al., 2015). Scalp measurements are contaminated by dif-
ferent non-neural biological artefacts, especially electromyogram
(EMG) (Zhang et al., 2015). Removing this muscle contamination is
one of the main issues in EEG research.

Phasic contractions of cranial muscles are large enough in ampli-
tude that they can be easily detected by visual inspection or
mathematical algorithms and then, either, the data are ignored or
the signal imperfectly “cleaned” (Freeman et al., 2003; Goncharova
et al., 2003; Fitzgibbon et al., 2015). In contrast, tonic muscle activ-
ity, especially the steady contractions that maintain the posture
of head and neck, are typically too low in amplitude to be easily
detected in scalp measurements but significantly affect their power
spectra (Whitham et al., 2008; Pope et al., 2009). Recent research
on paralysed, conscious subjects indicates that tonic muscle con-
tamination increases spectral power of EEG from frequencies as
low as 10–20 Hz, with increases up to 200 times higher than EEG
especially at peripheral channels (Whitham et al., 2007; Whitham
et al., 2008; Pope et al., 2009).

Different methods have been implemented which aim to pro-
vide EMG-free EEG using various referencing methods (Fitzgibbon
et al., 2013; Fitzgibbon et al., 2015) or blind source separation
(BSS) (Pope and Bogner, 1996), but none of them have been com-
pletely successful (Amari et al., 1996; McMenamin et al., 2010;
Fitzgibbon et al., 2013; Gabsteiger et al., 2014). Independent com-
ponents analysis (ICA) (Shackman et al., 2009; McMenamin et al.,
2011; Fitzgibbon et al., 2016) and canonical correlation analysis
(CCA) (De Clercq et al., 2006; Karhunen et al., 2012) are the most
common BSS approaches in removing muscle contamination.

ICA separates a set of signals (EEG channels) into a set of sources
or components, via a linear transformation. Like principal compo-
nent analysis (PCA), ICA algorithms produce components that are
uncorrelated, but ICA additionally maximises their independence
(Prakash and Roy, 2016). Different characteristics of components
such as spectral slope, topographic maps and their temporal prop-
erties can be evaluated to detect and reject muscle components
(Shackman et al., 2009; Fitzgibbon et al., 2016). The disadvantages
of these techniques are their computational complexity (Hyvärinen
and Oja, 2000), the need for many samples of data, particularly
when there are many EEG channels (Korats et al., 2012), and their
inability to separate sources with Gaussian distributions or white
spectra, depending on the ICA algorithm (Prakash and Roy, 2016).

CCA is a statistical method using a linear transformation to
find the correlation structure between two multivariate datasets
(Hotelling, 1936). In 2006, Clercq and colleagues proposed CCA as a
BSS approach to remove muscle contamination of EEG. BSS-CCA
finds components uncorrelated with each other and maximally
autocorrelated at a lag of one sample by considering the scalp
recording data as the first dataset and a delayed version as the sec-
ond dataset (De Clercq et al., 2006). The broad band spectrum of
EMG, resembling white noise, and its concomitant low autocor-
relation are exploited to identify muscle components (Chen et al.,
2014). Since then, several researchers have reported the superiority
of BSS-CCA to the traditional ICA method of extracting phasic mus-
cle components (De Clercq et al., 2006; Gao et al., 2010; Karhunen
et al., 2012).

The standard approach to muscle reduction using CCA has some
limitations. First, muscle activity, both phasic and tonic, does not
have a flat spectrum like white noise (Engel et al., 1992; Bertrand

and Tallon-Baudry, 2000; Goncharova et al., 2003). For example,
Fitzgibbon et al. (2016) and Goncharova et al. (Goncharova et al.,
2003) have shown that spectral power of muscle components
increases with frequency in the range 7–75 Hz. Second, there is lit-
tle discussion about how to choose which components are to be
discarded. Perhaps the clearest advice is to discard components
with low correlation coefficient one by one until enough muscle
contamination is removed (Górriz et al., 2011). Third, the effect of
environmental noises in the recorded mixtures are ignored. Two
significant sources are mains power noise and white noise, which
have autocorrelation coefficients in the range of brain and mus-
cle respectively. Fourth, while the effectiveness of the approach in
removing phasic muscle contamination has been tested, its effect
on tonic muscle has not been addressed. It has been shown that
constant tonic muscle contamination of EEG is significant even in
resting positions (Whitham et al., 2007).

In this paper, we address these limitations by examining the cor-
relation coefficients of brain, muscle, mains power and white noise
signals, and use datasets that have no muscle (paralysis), and no
muscle and no brain (background noise) to identify improvements
in the approach. We  then propose a new algorithm that uses the
spectral slope of components in addition to their correlation coef-
ficient to improve muscle removal, especially tonic muscle. Finally,
we compare our proposed algorithm with a standard ICA muscle
removal approach, based on Infomax (Bell and Sejnowski, 1995),
and demonstrate improved performance can be achieved.

2. Method

2.1. Datasets

To evaluate different muscle removal approaches, we applied
them to three different existing datasets recorded from healthy
participants. All participants signed a consent form and these
experiments were approved by the Clinical Research Ethics Com-
mittee of Flinders Medical Centre and Flinders University.

The first dataset contains scalp recordings from 6 participants
as described in Table 1. The participants were asked to complete
a series of tasks including: baseline eyes closed, baseline eyes
open, the auditory verbal learning task, serial subtraction, and
exposure to a strobe light. The tasks were performed twice, once
before and once during pharmacologically-induced paralysis. So,
the first set of these data contained muscle artefact (pre-paralysis
or EMG-contaminated) while the second has no muscle artefact
(post-paralysis or EMG-free). More information about this dataset
can be found in (Whitham et al., 2007; Whitham et al., 2008).

The second dataset consists of 13 participants as described in
Table 1. An auditory stimulus with a 1500 Hz carrier amplitude
modulated by a 40 Hz message was presented for all participants
under three conditions as previously described (DeLosAngeles,
2010). Under all conditions, the brain should exhibit an auditory
steady state response to this stimulus. The total recording time was
about 6 min.

The third dataset includes 93 participants (large sample) as
detailed in Table 1. They were asked to complete a series of
tasks: baseline eyes closed, baseline eyes open, the auditory ver-
bal learning task, serial subtraction, auditory discrimination, visual
discrimination, visual rotation, reading, traversing a maze, and fin-

Table 1
EEG parameters and subject demographics.

Dataset number females males Age Number of EEG channels Reference channel Sampling frequency (Hz) Length of data (min)

1 1 5 28–73 115 Left ear 1000 12
2  7 6 7–80 112 Left ear 1000 6
3  48 45 29–62 115 Linked-ears 1000 22
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