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h  i g  h  l  i g  h  t  s

• A  framework  to rapidly  detect  dynamics  of functional  network  states.
• It  captures  functional  connectivity  patterns  more  effectively  than  other  methods.
• Functional  similarity  metric  measures  global  network  response  to local  changes.
• It bridges  the  gap between  time  scales  of  neural  activity  and  behavioral  states.
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a  b  s  t  r  a  c  t

Background:  Recent  advances  in neurophysiological  recording  techniques  have  increased  both  the  spatial
and temporal  resolution  of  data.  New  methodologies  are required  that  can  handle  large  data  sets  in  an
efficient  manner  as  well  as  to  make  quantifiable,  and  realistic,  predictions  about  the  global  modality  of
the brain  from  under-sampled  recordings.
New  method:  To  rectify  both  problems,  we  first  propose  an  analytical  modification  to  an  existing  func-
tional  connectivity  algorithm,  Average  Minimal  Distance  (AMD),  to rapidly  capture  functional  network
connectivity.  We  then  complement  this  algorithm  by  introducing  Functional  Network  Stability  (FuNS),  a
metric that  can  be used  to  quickly  assess  the global  network  dynamic  changes  over  time,  without  being
constrained  by  the  activities  of a specific  set  of  neurons.
Results: We  systematically  test  the  performance  of  AMD and  FuNS  (1) on  artificial  spiking  data  with
different  statistical  characteristics,  (2) from  spiking  data  generated  using  a neural  network  model,  and
(3)  using  in  vivo  data  recorded  from  mouse  hippocampus  during  fear  learning.  Our results  show  that
AMD  and  FuNS  are  able  to  monitor  the change  in  network  dynamics  during  memory  consolidation.
Comparison  with  other  methods:  AMD outperforms  traditional  bootstrapping  and  cross-correlation  (CC)
methods  in  both  significance  and  computation  time.  Simultaneously,  FuNS  provides  a  reliable  way  to
establish  a  link  between  local  structural  network  changes,  global  dynamics  of  network-wide  represen-
tations  activity,  and  behavior.
Conclusions:  The  AMD-FuNS  framework  should  be  universally  useful  in  linking  long  time-scale,  global
network  dynamics  and  cognitive  behavior.
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1. Introduction

New multisite recording techniques have generated a wealth
of data on neuronal activity patterns in various brain modalities
(Buzsaki, 2004; Lichtman et al., 2008; Luo et al., 2008; Chorev et al.,
2009). An unresolved question is how, using such data sets, one can
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correctly identify large-scale network dynamics from populations
of neurons which either may, or may  not, include neurons involved
in a particular cognitive process of interest. This is due in part to the
fact that even high-density recordings sample only a sparse subset
of the neural system responsible for the modality in question. It is
also complicated by the inherent separation of temporal scales over
which neural vs. behavioral measurements occur.

In response to this question, multiple linear and non-linear
techniques have been developed over the years to assess func-
tional connectivity between neurons, and to possibly infer from
it structural connectivity (see for example: Friston et al., 2013;
Bastos and Schoffelen, 2016; Cimenser et al., 2011; Cestnik and
Rosenblum, 2017; Zaytsev et al., 2015; Poli et al., 2016; Shen et al.,
2015; Wang et al., 2014). More recent approaches utilize network
theory to establish links between recorded data and the under-
lying connectivity (see for example: Newman, 2004, 2006, 2010;
Ponten et al., 2010; Rubinov and Sporns, 2010; Sporns et al., 2000;
De Vico Fallani et al., 2014; Supekar et al., 2008; Boccaletti et al.,
2006; Stafford et al., 2014; Petersen and Sporns, 2015; Misic and
Sporns, 2016; Park and Friston, 2013; Bassett et al., 2010; Feldt
et al., 2011; Gu et al., 2015; Medaglia et al., 2017; Davison et al.,
2015; Hermundstad et al., 2011; Bassett et al., 2011; Shimono and
Beggs, 2015; Nigam et al., 2016; Nakhnikian et al., 2014; Pajevic
and Plenz, 2009). The idea is that, by estimating networks based
on functional interactions, one can potentially gain insight into
global dynamics, which reflect the general property of the whole
network, instead of a specific subset of neurons. While all these
approaches can provide insightful information, they share some
the same problems. These methods are often limited by under-
sampling (and potentially unrepresentative sampling) of neuronal
recordings, and are not optimized for monitoring changes in net-
work structure across extended time periods (i.e., those associated
with behaviors of interest, such as memory formation).

Here we propose a novel technique that rapidly estimates func-
tional connectivity between recorded neurons. Then, rather than
characterizing details of the recovered network, the metric mea-
sures changes in the network dynamical stability over time. The
technique is based on an estimation of Average Minimal Distance
(AMD) between spike trains of recorded neurons, a metric which
has previously been compared to other clustering algorithms (Feldt
et al., 2009). Here, we expand on this work and show that the
analytic estimation of AMD  for the null case, when the two cells
are independent, allows for rapid estimation of the significance of
pairwise connections between the spike trains, without need for
time-expensive bootstrapping.

Further, Functional Network Stability (FuNS) is introduced and
is monitored over timescales relevant for behavior. We  show that
FuNS measures global change in network dynamics in response to
localized changes within the network. This, in part, alleviates the
problem of sparse sampling so prevalent in neuroscience.

Below, the statistical underpinnings of AMD  and FuNS are
detailed. We  compare AMD  and cross-correlation (CC) on both sur-
rogate data and model simulation data. Model results show the
applicability of AMD  and FuNS on excitatory-only networks, as
well as on mixed networks of excitatory and inhibitory neurons
poised near a balance between excitation and inhibition, a regime
thought to be a universal dynamical state achieved by brain net-
works, resulting in enhanced information processing properties
(Froemke, 2015; Barral and Reyes, 2016; Poil et al., 2012; Berg
et al., 2007; Rubin et al., 2017). We  end by analyzing experimental
data recorded from the mouse hippocampus during contextual fear
memory formation. Our results indicate that AMD  yields results
comparable to that of the gold-standard CC, but, importantly, it
is orders of magnitude faster and reports statistically significant
increases in FuNS due to behavioral-based network topological

Table 1
List of Common Abbreviations.

Abbreviation Full Name

AMD Average Minimal Distance
CA1 Cornu Ammonis 1
CC Cross-correlation
CFC Contextual Fear Conditioning
E/I Excitatory/Inhibitory Ratio
FC  Functional Connectivity
FCM Functional Connectivity Matrix
FSM Functional Stability Matrix
FuNS Functional Network Stability
IAF Integrate and fire
ISI  Interspike interval

changes compared to CC FuNS (please see Table 1 for all the abbre-
viations).

2. Methods

2.1. Statistical methods

2.1.1. Average minimal distance (AMD) and its significance
estimation

Pairwise functional connectivity is estimated using average
minimal distance (AMD) (Feldt et al., 2009) (Fig. 1) separating the
relative spike times between neurons. AMD  is calculated as follows:
given the full spike trains {S1, S2, . . .,  Sn} for n neurons within a
network, the pairwise functional relationship, FCij, of the ith and jth

neurons is evaluated by comparing the average temporal closeness
of spike trains Si and Sj to the expected sampling distance of train
Sj (Fig. 1a). That is,

AMDij = 1
Ni

∑
k

�tik, where Ni is the number of events in Si and

�tik is the temporal distance between an event k in Si to the nearest
event in Sj. With AMD  measured, the functional connectivity (FC) is

calculated as FCij =
√
Ni ∗

(
AMDij − �j

)
/�j , which is expressed in

terms of probabilistic significance of connectivity between pair ij.
The mean and standard deviation, �j and �j, of the expected sam-
pling distance, assuming that the spike trains are independent, can
be calculated from either: 1) boot-strapping (i.e. randomizing the
spike trains multiple times and reassessing the AMD  for the null
hypothesis being statistically independent of the two  spike trains),
or 2) numerical estimation of expected values given the distribu-
tion of inter-spike intervals (ISIs) on Sj. Hereafter, the analytical
method is referred to as “fast AMD” and the bootstrapping method
as “bootstrapped AMD”. For a system with n neurons, the functional
connectivity value between each pair of spike trains is calculated,
generating an n-by-n Functional Connectivity Matrix (FCM).

In the fast AMD  approach, the maximal distance between an
input spike and any spike in the spike train to be analyzed is ISIi

2 .
Then, the expected mean distance between spikes in the inde-
pendent spike trains is �i = ISIi

4 , where ISIi is the corresponding
interspike interval of spike train i (Fig. 1b). Calculating the first and
second raw moments from the maximal distance then yields �L1 =
1
4L and �L2 = 1

12L
2 for a specific ISI with length L. Taking into account

the probability of observing an ISI with length L over the recording
interval T, p (L) = L

T , the first and second moment for sampling the

whole spike train randomly are then �1 =
∑
L

L
T �

L
1 = 1

4T

∑
L

L2 and

�2 =
∑
L

L
T �

L
2 = 1

12T

∑
L

L3, respectively. The expected mean and

standard deviation of a random spike train are then calculated as
� = �1 and � =

√
�2 − �2

1.



Download English Version:

https://daneshyari.com/en/article/8840441

Download Persian Version:

https://daneshyari.com/article/8840441

Daneshyari.com

https://daneshyari.com/en/article/8840441
https://daneshyari.com/article/8840441
https://daneshyari.com

