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8 Abstract—Neurofeedback training is a form of brain training

in which information about a neural measure is fed back to

the trainee who is instructed to increase or decrease the

value of that particular measure. This paper focuses on elec-

troencephalography (EEG) neurofeedback in which the neu-

ral measures of interest are the brain oscillations. To date,

the neural mechanisms that underlie successful neurofeed-

back training are still unexplained. Such an understanding

would benefit researchers, funding agencies, clinicians, reg-

ulatory bodies, and insurance firms. Based on recent empir-

ical work, an emerging theory couched firmly within

computational neuroscience is proposed that advocates a

critical role of the striatum in modulating EEG frequencies.

The theory is implemented as a computer simulation of peak

alpha upregulation, but in principle any frequency band at

one or more electrode sites could be addressed. The simu-

lation successfully learns to increase its peak alpha fre-

quency and demonstrates the influence of threshold

setting – the threshold that determines whether positive or

negative feedback is provided. Analyses of the model sug-

gest that neurofeedback can be likened to a search process

that uses importance sampling to estimate the posterior

probability distribution over striatal representational space,

with each representation being associated with a distribu-

tion of values of the target EEG band. The model provides

an important proof of concept to address pertinent method-

ological questions about how to understand and improve

EEG neurofeedback success.

This article is part of a Special Issue entitled: Neurofeed-

back. � 2017 IBRO. Published by Elsevier Ltd. All rights

reserved.
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10 INTRODUCTION

11 There are an increasing number of media reports about

12 controlling electronic devices through brainwaves,

13whether it is for therapeutic reasons or for pure

14entertainment. These brain-computer interfaces utilize

15the ability of people to learn to voluntarily change their

16brain rhythms when provided with corrective feedback.

17This process is called neurofeedback and understanding

18how it works is the topic of this paper. Neurofeedback is

19a goal-directed process of modulating one’s own neural

20dynamics by means of feedback-induced learning. The

21feedback that is obtained can either be internal

22phenomenological experiences or external provided

23stimulation of which visual and auditory stimulations are

24the most common modalities. The neural dynamics that

25are being influenced can be measured through

26electroencephalography (EEG), magnetoencephalog-

27raphy (MEG), blood-oxygen-level-dependent (BOLD)

28responses or any other direct or indirect methods.

29This paper focuses on EEG neurofeedback. The aim

30here is to provide a proof of concept that using

31computational methods from neuroscience can pave the

32way for understanding how neurofeedback works. In

33several papers and books authored by leading

34practitioners and researchers, a common call is

35expressed to develop a theoretical understanding of

36neurofeedback (e.g., Evans and Abarbanel, 1999;

37Budzynski et al., 2009). Although the neural circuitry

38involved in some brain rhythms are understood at a

39descriptive level, how these rhythms are influenced

40through feedback-based learning at a mechanistic level

41is still unclear.

42Why would we need to seek to understand

43neurofeedback? Knowledge of the mechanisms

44underlying neurofeedback at the neural level provides a

45critical foundation for (1) interpreting findings (from the

46lab and clinic), (2) guiding research efforts, (3)

47developing new protocols, (4) improving existing

48protocols, (5) quality assurance, (6) risk assessment

49and management, and (7) approval of protocols.

50Currently, the research on neurofeedback is making

51great steps in validating the efficacy of neurofeedback

52training (see for recent special issues Gruzelier et al.,

532014a,b; van Boxtel and Gruzelier, 2014). However, there

54is no validated standardized methodology or a standard

55way of reporting the methods that have been used, lead-

56ing to high study-exclusion rates in systematic reviews or

57meta-analyses (e.g., Emmert et al., 2016). To circumvent

58this, computational methods can be used to test whether

59certain choices, such as threshold settings, integrating

60neural activity across electrodes, the time window over

61which the neural signal is calculated, and the maximum
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magnetoencephalography; MSN, medium spiny neuron; PAF, peak
alpha frequency; rt, real-time; SCP, slow cortical potential; UAF, upper
alpha frequency.
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62 feedback rate, have an effect of neurofeedback success

63 and if so what the optimal parameters are. Given that

64 properly conducted experimental studies are costly in

65 terms of investment of money, time, and labor, dry-

66 testing a protocol using a computational model can make

67 the research efforts more efficient. At present, such an

68 opportunity does not exist.

69 To facilitate the process, this paper puts forward an

70 initial step toward a computational theory that explicates

71 the neural mechanisms underlying neurofeedback

72 training. By way of illustration, a computational model

73 using spiking neurons is implemented that shows

74 successful neurofeedback training and allows an

75 analysis of the learning process. To demonstrate its

76 benefit, the influence of threshold setting on learning is

77 addressed in a mathematical abstraction of the model.

78 Future work will address how each of the

79 aforementioned points can be supported by using a

80 computational modelling approach.

81 There are many detailed descriptions of the

82 neuroanatomical circuitry involved in the generation of

83 brain frequencies (e.g., SCP: Birbaumer et al., 1990;

84 SMR: Sterman, 1996; Hughes and Crunelli, 2005; Ritter

85 et al., 2009; theta: Gruzelier, 2009; Hsieh and

86 Ranganath, 2014), but only some reports provide sugges-

87 tions of what neurofeedback might be doing to this cir-

88 cuitry at the neurophysiological level (e.g., Sterman,

89 1996; Koralek et al., 2012). Here, a general theory of neu-

90 rofeedback learning is proposed that is articulated at the

91 neurophysiological level and addresses the contributions

92 of the striatum and the thalamus. The theory is assumed

93 to be applicable to any neurofeedback modality (EEG,

94 MEG, BOLD) and breaks neurofeedback learning down

95 into three stages, of which the first stage is then imple-

96 mented in a computer simulation model. In order to

97 address how the first stage unfolds a second simulation

98 model is analyzed in which the threshold setting for posi-

99 tive feedback is systematically varied. The results support

100 the view that during stage 1, the striatum performs a

101 search through representational space using importance

102 sampling, i.e., maintaining only those sampled represen-

103 tations that lead to reward.

104 THE IMPORTANCE OF THE STRIATUM

105 Several studies employing a variety of methodologies

106 confirm the critical contribution of the striatum in

107 neurofeedback learning. Neuroimaging studies have

108 shown the involvement of the entire striatum in

109 neurofeedback (ventral striatum: Johnston et al., 2010;

110 putamen: Hinterberger et al., 2005; caudate: Levesque

111 et al., 2006). Johnston et al. (2010) trained participants

112 using a real-time (rt) fMRI-neurofeedback to increase

113 the activation in the emotion network, as defined by the

114 collection of brain regions that was maximally responsive

115 to negative versus neutral stimuli. One of the non-target

116 areas that was activated during the learning process

117 was the ventral striatum. Hinterberger et al. (2005)

118 demonstrated the involvement of the putamen and thala-

119 mus in regulating the slow cortical potential (SCP) over

120 Cz. Levesque et al. (2006) observed increased functional

121activation of the caudate in ADHD children after a theta/

122SMR/beta1 protocol (20 sessions SMR increase with

123theta decrease followed by 20 sessions beta1 increase

124with theta decrease) over Cz. Furthermore, in a structural

125MRI study, Ghaziri et al. (2013) found increased white

126matter density in the anterior limb of the internal capsule

127(ALIC) after increasing beta1 at F4 and P4 with EEG neu-

128rofeedback. Increases in fractional anisotropy in the left

129ALIC, which includes cortico-striatal as well as frontal

130cortico-thalamic fibers, was correlated with enhanced

131visual attention. Finally, in a critical experiment involving

132rats, Koralek et al. (2012) measured the activity of motor

133neurons and transformed this activity into an auditory sig-

134nal. They showed that rats lacking cortico-striatal plastic-

135ity could not learn to control the auditory pitch. In a series

136of experiments they also demonstrated that cortico-

137striatal plasticity is necessary for neuroprosthetic control

138to occur. These studies provide strong support for the

139view that the entire striatum is involved in neurofeedback

140learning with lasting functional and structural conse-

141quences. Whether there is specificity in the recruitment

142of striatal subregions in relation to the EEG frequency,

143learning direction, and electrode site is yet unclear.

144This is not to say that it is impossible for EEG

145spectrum modification to occur through synaptic

146changes at cortical sites only in the absence of a striatal

147contribution, but the current literature provides

148compelling evidence for a striatal theory of

149neurofeedback learning. In a recent meta-analysis of 12

150rt-fMRI studies, Emmert et al. (2016) observed that the

151striatum and the anterior insula were non-target regions

152that were consistently activated during the neurofeedback

153learning. They suggested the existence of a ‘‘regulating

154network” of which the striatum and the anterior insula con-

155tribute through their involvement in reward-based learning

156and self-awareness processes, respectively. These find-

157ings are critical building blocks of the proposed theory to

158which we turn next.

159A MULTI-STAGE THEORY OF
160NEUROFEEDBACK LEARNING

161What happens in the brain of a person from the first

162training session to demonstrable voluntary control over

163EEG brainwaves? In the theory advanced here three

164stages are discerned (see Fig. 1). In the first stage

165(indicated by the red parts in Fig. 1), trainees may try

166different things, such as the strategies provided by the

167trainer, strategies read from the internet, or idiosyncratic

168strategies that come to mind during the training session.

169Examples of strategies are trying to relax, focus on

170breathing, counting numbers, thinking back of positive

171events, trying to become angry or positive, staring at a

172point on the computer screen, and many more. This

173stage is the problem solving or exploration stage and

174involves performing various mental acts and evaluating

175their consequences on the feedback signal. It is

176expected that frontal brain areas are critically involved in

177this stage, as it requires retrieval, creation, and

178maintenance of goal representations (i.e., possible

179strategies), execution of these strategies as response
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