Accepted Manuscript

Accepted date:

Title: Pharmacological disruption of the MID1/a4 interaction reduces mutant Huntingtin levels in primary neuronal cultures

Authors: Olivia Monteiro, Changwei Chen, Ryan Bingham, Argyrides Argyrou, Rachel Buxton, Christina Pancevac Jönsson, Emma Jones, Angela Bridges, Kelly Gatfield, Sybille Krauß, Jeremy Lambert, Rosamund Langston, Susann Schweiger, Iain Uings

PII:	S0304-3940(18)30150-2
DOI:	https://doi.org/10.1016/j.neulet.2018.02.061
Reference:	NSL 33453
To appear in:	Neuroscience Letters
Received date:	29-9-2017
Revised date:	30-1-2018

27-2-2018

Please cite this article as: Olivia Monteiro, Changwei Chen, Ryan Bingham, Argyrides Argyrou, Rachel Buxton, Christina Pancevac Jönsson, Emma Jones, Angela Bridges, Kelly Gatfield, Sybille Krauß, Jeremy Lambert, Rosamund Langston, Susann Schweiger, Iain Uings, Pharmacological disruption of the MID1/a4 interaction reduces mutant Huntingtin levels in primary neuronal cultures, Neuroscience Letters https://doi.org/10.1016/j.neulet.2018.02.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Pharmacological disruption of the MID1/ α 4 interaction reduces mutant Huntingtin levels in primary neuronal cultures

Olivia Monteiro¹, Changwei Chen¹, Ryan Bingham², Argyrides Argyrou², Rachel Buxton², Christina Pancevac Jönsson², Emma Jones², Angela Bridges², Kelly Gatfield², Sybille Krauß³, Jeremy Lambert¹, Rosamund Langston¹, Susann Schweiger⁴ and Iain Uings⁵

¹Division of Neuroscience, University of Dundee, UK

²Platform Technology and Sciences, GlaxoSmithKline, UK

³German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

⁴Department of Human Genetics, University of Mainz, Germany

⁵Discovery Partnerships with Academia, GlaxoSmithKline, UK

Corresponding author: Iain Uings

Email: iain.j.uings@gsk.com

Address: GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, UK SG1 2NY

Highlights

- Cerebellar granule neurons require nutrient replenishment to maintain expression of HTT in culture.
- Peptides derived from $\alpha 4$ disrupt the interaction between MID1 and $\alpha 4$.
- Disruption of the MID1 complex by peptides reduces pS6 and HTT expression in CGN cultures.

Download English Version:

https://daneshyari.com/en/article/8841586

Download Persian Version:

https://daneshyari.com/article/8841586

Daneshyari.com