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A B S T R A C T

Major depressive disorder (MDD) is characterized by dysregulation of distributed structural and functional
networks. It is now recognized that structural and functional networks are related at multiple temporal scales.
The recent emergence of multimodal fusion methods has made it possible to comprehensively and systematically
investigate brain networks and thereby provide essential information for influencing disease diagnosis and
prognosis. However, such investigations are hampered by the inconsistent dimensionality features between
structural and functional networks. Thus, a semi-multimodal fusion hierarchical feature reduction framework is
proposed. Feature reduction is a vital procedure in classification that can be used to eliminate irrelevant and
redundant information and thereby improve the accuracy of disease diagnosis. Our proposed framework pri-
marily consists of two steps. The first step considers the connection distances in both structural and functional
networks between MDD and healthy control (HC) groups. By adding a constraint based on sparsity regular-
ization, the second step fully utilizes the inter-relationship between the two modalities. However, in contrast to
conventional multi-modality multi-task methods, the structural networks were considered to play only a sub-
sidiary role in feature reduction and were not included in the following classification. The proposed method
achieved a classification accuracy, specificity, sensitivity, and area under the curve of 84.91%, 88.6%, 81.29%,
and 0.91, respectively. Moreover, the frontal-limbic system contributed the most to disease diagnosis.
Importantly, by taking full advantage of the complementary information from multimodal neuroimaging data,
the selected consensus connections may be highly reliable biomarkers of MDD.

1. Introduction

Major depressive disorder (MDD), which is characterized by low
self-esteem, loss of interest in normally enjoyable activities, low energy,
decreases in productivity and recurrent thoughts of self-harm or sui-
cide, is the second largest cause of disability worldwide [1]. According
to a recent report by the World Health Organization (WHO), the
number of subjects with depression has increased by nearly 20% during
the previous decade, and the current lifetime estimated prevalence of
MDD worldwide is 17%. However, in most developed countries, half of
the patients with MDD who suffer from depression are undiagnosed or
untreated, and in less-developed nations, this percentage soars to be-
tween 80 and 90% [2]. Thus, early diagnosis is urgently needed for
treating people at a risk of developing MDD.

To address this need, potential biomarkers of depression that can
effectively predict and diagnose the disease have been evaluated in
many neuroimaging studies [3–5]. Neuroimaging techniques, including
magnetic resonance imaging (MRI), diffusional tensor imaging (DTI),
positron emission tomography (PET) and functional MRI (fMRI), have
the capacity to diagnose and predict the prognosis of patients with
MDD. Extensive studies investigating multi-modality multi-task
methods have been recently performed, and these methods have
achieved excellent performance by fully utilizing complementary in-
formation from multiple modalities [6–9].

MDD is a heterogeneous illness, and its symptoms are associated
with a dysregulation of a distributed neuronal network encompassing
widespread regions that are associated with emotional and cognitive
functions [10–13]. The dysregulation of distributed neuronal networks
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can be expressed by functional connectivity brain networks and struc-
tural connectivity brain networks. Functional connectivity brain net-
works can generally be investigated by group-level statistical compar-
isons and multivariate pattern analyses [14–16]. However, these
methods cannot be applied to characterize the disease-associated
structural networks because these connections are defined by the
Pearson correlation coefficients between the interregional volume/
cortical thickness across subjects within a group. Therefore, it may be
challenging to utilize information from structural networks to predict
and diagnose diseases may be challenging. However, the concept of
multimodal fusion provides the following useful information: Structural
networks could be employed as supplementary information, rather than
a principal factor, in disease diagnosis. Structural and functional net-
works have been shown to be related at multiple temporal scales [17].
Brain areas are connected by white matter axons, and both are believed
to be influenced by common tropic, developmental, and maturational
influences [18–23]. The remarkable homogeneity between functional
and structural networks indicates that functional connectivity networks
can be considered the primary choice for the “principal part” in mul-
timodal fusion. However, notably, the pattern of multimodal fusion in
our paper is inconsistent with conventional multi-modality multi-task
methods. Structural networks were introduced only to obtain supple-
mentary information for feature reduction but were not applied in the
following classification procedure. We named this approach “semi-
multimodal fusion”.

In this paper, we propose a hybrid feature reduction framework to
better capture complementary information from multiple modalities by
preserving the relationship between the feature vectors derived from
the functional and structural connections. To solve the inconsistent
dimensionality of the features between the functional and structural
networks, we replicated the feature matrix of the structural networks.
Our proposed method is a hybrid feature reduction framework com-
posed of two steps. The initial feature filtering is performed during the
first step. In this process, we considered both the significance obtained
by two-sample t-tests comparing functional connections and the dis-
tance of structural connections between the MDD and healthy control
(HC) groups. The “wrapper” feature selection is performed during the
second step, and we added a new constraint to preserve the inter-
modality relationship based on the original k-support norm to enforce
the sparseness of the selected features from the functional connections.
The k-support norm is a key statistical method for improving the pre-
dictive performance when the sample size is substantially smaller than
the dimensionality of the features while the underlying signal is known
to be sparse [24]. Finally, a support vector machine (SVM) was applied
to predict the classification label based on the selected functional
connections.

2. Materials and methods

2.1. Study sample

This study was conducted at the Department of Psychosomatics and
Psychiatry, ZhongDa Hospital, Southeast University. Written informed
consent was obtained from each participant according to the
Declaration of Helsinki, and all procedures were approved by the
medical ethics committee of ZhongDa Hospital, Southeast University. In
total, 56 antidepressant-free patients with MDD and 55 demo-
graphically similar HCs were recruited for this study. Detailed de-
scriptions of all participants are presented in the supplementary mate-
rial (S1). The demographic and clinical characteristics of the patients
with MDD and the HCs are presented in Table 1.

2.2. Image acquisition

Imaging data were acquired using a 3-T Siemens scanner with a 12-
channel head coil. High-resolution 3-dimensional T1-weighted 3D scans

were recorded in a magnetization prepared rapid gradient echo se-
quence (TR/TE = 1900/2.48 ms; FA = 90°; acquisition ma-
trix = 256 × 256; FOV = 250 × 250 mm2). The whole brain resting-
state fMRI data were acquired using a gradient-recalled echo-planar
imaging pulse sequence (TR/TE = 2000/25 ms; FA = 90°; acquisition
matrix = 64 × 64; FOV = 240 × 240 mm2; total volumes = 240).
During the 8-min resting-state fMRI scan, the participants were in-
structed to keep their eyes open, relax, lay still in the scanner and re-
frain from falling asleep.

2.3. Structural connectivity networks

The VBM analyses were performed using Statistical Parametric
Mapping (SPM8: http://www.fil.ion.ucl.ac.uk/spm). The preprocessing
flow is consistent with the standard VBM DARTEL procedure, and the
detailed steps are presented in the supplementary material (S2). We
constructed the structural connection matrix using the following steps.
First, we generated ninety cortical and subcortical ROIs, excluding the
cerebellum, by applying the automated anatomical labeling (AAL)
parcellation scheme. Pearson correlation coefficients between the vo-
lumes within each ROI across subjects were calculated. Therefore, two
structural connectivity networks (MDD groups vs. HC groups) were
generated using the aforementioned approaches. After removing 90
diagonal elements, we extracted the lower triangle elements of the
correlation coefficients (CCs) as features; the feature space was spanned
by (90 × 89)/2 = 4005-dimension feature vectors. Therefore, the
4005-dimension feature vectors MS

MDDand MS
HCwere constructed for the

MDD and HC groups, respectively.

2.4. Resting-state functional networks

2.7 The resting-state fMRI data were analyzed using SPM8 software
and the CONN-fMRI Functional toolbox [25]. The preprocessing flow is
consistent with the standard processing procedure, which is im-
plemented in CONN-fMRI, and the detailed preprocessing steps are
presented in the supplementary material (S3). We constructed a func-
tional connection matrix using the following steps. We parcellated all
brain maps into 90 cortical and subcortical ROIs, excluding the cere-
bellum, by applying the AAL parcellation scheme. Pearson correlations
between the mean time courses of each pair of ROIs were calculated.
Therefore, for each subject, we obtained a resting-state functional
network captured by a 90 × 90 symmetric matrix. We extracted the
lower triangle elements of the CCs as features, and the feature space
was spanned by (90 × 89)/2 = 4005 dimension feature vectors.

2.5. Semi-multimodal fusion hierarchical feature reduction framework

An overview of our proposed MDD diagnosis pipeline is illustrated
in Fig. 1. Our proposed hybrid feature reduction framework comprised
two steps. First, the initial feature filtering step was performed, fol-
lowed by a modified sparsity regularization.

2.5.1. Feature filtering procedure
Flow path of the feature filtering procedure was as follows: (1) we

generated the differential structural network feature vector ΔMSby
subtracting the features in MS

HC from the corresponding features in
MS

MDD, i.e., = −ΔM M MS S
MDD

S
HC; (2) we sorted all 4005 features in ΔMS

in descending order according to their absolute values; (3) a two-
sample t-test was performed to determine whether each of the 4005
features of the functional connectivity network was significantly dif-
ferent between the patients of MDD and the HCs. All 4005 features were
ranked according to their significance level; (4) to integrate the ana-
tomical and functional connectivity information extracted from T1 and
the rs-fMRI, an overlapping pattern was used to select the features; (5)
we selected the top-ranked c features from the different modalities,
where c was set based on the rule that the value of the c-th feature in
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