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a b s t r a c t

Food products move through complex supply chains, which require effective logistics to ensure food
safety and to maximize shelf-life. Predictive models offer an efficient means to monitor and manage the
safety and quality of perishable foods, however models require environmental data to estimate changes
in microbial growth and sensory attributes. Currently, several companies produce Time-Temperature
Indicators that react at rates that closely approximate predictive models; these devices are simple and
cost-effective for food companies. However, even greater outcomes could be realized using sensors that
transfer data to predictive models in real-time. This report describes developments in predictive models
designed for supply chain management, as well as advances in environmental sensors. Important
innovation can be realized in both supply chain logistics and food safety management by integrating
these technologies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Today's food marketplace is highly global and complex, a fact
emphasized when epidemiologists attempt to locate specific
sources of contamination following an outbreak. A notable example
is the 2011 E. coli O104:H4 outbreak in Germany, in which more
than 4000 persons became ill and 54 died (Burger, 2012; Grad et al.,
2012; Karch et al., 2012). After extensive investigation, seed pro-
duced in Africa two years earlier and sold to different sprouting
companies in Europe, were consider a likely vehicle for the path-
ogen. However it could not be concluded if the seed was contam-
inated at production, at import, or during transport (Karch et al.,
2012).

Also consider the challenge of investigating a potential food-
borne illness linked to a serving of ‘Chicken Kiev’, a processed
product in which ingredients can originate from more than 15
countries (Wall, 2010). Further compounding this situation is the
complexity of the ‘food highway’, as described by Ercsey-Ravasz
et al. (2012). They accessed very large databases of food import-
export data, graphically demonstrating the complexity of the in-
ternational agro-food trade network, and thus implicating the
importance of logistics (e.g. time, temperature, and cross-
contamination) on food safety and quality (i.e. food stability). All

of these examples underline the need for effective food traceability
systems.

While consumers are not normally aware of the sources of in-
gredients in their food, this information is vital to commercial food
safety systems, where food processors must trace all ingredients
back to specific suppliers (FDA, 2011). Fortunately, advances in
digital technology (e.g. bar codes, radio frequency tags, wireless
networks) have been used to develop sophisticated traceability
systems (Regattieri et al., 2007). Yet even more valuable flows of
information could be realized if sensors were coupled to predictive
models, revealing in real-time how actions in the supply chain in-
fluence both the safety and quality of our food supply.

This report describes the development of predictive models,
sensors and software that, when integrated, can provide partici-
pants (actors) in a food chain with the appropriate tools to monitor
and predict food safety and quality (McMeekin, 2007; McMeekin
et al., 2006; McMeekin and Ross, 1996).

2. Drivers of food safety

When considering the many drivers that impact food safety, the
management of modern commercial supply chains is very chal-
lenging. These factors include environmental impacts such as
climate change, food regulations that require companies to
implement food safety systems and to accept greater responsibility
for the actions of up- and down-stream suppliers, consumers whoE-mail address: mark.tamplin@utas.edu.au.
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prefer foods with less processing, changes in consumer de-
mographics, new food technologies, market pressures from food
retailers, and emerging hazards (Hobbs et al., 2002; Tirado et al.,
2010; Yapp and Fairman, 2006).

Nearly all of these drivers produce separate information flows
that are relevant to food stability, and which should be digitally
transmitted throughout the supply chain to prevent and control
foodborne illness and product spoilage.

3. Supply chains

Food supply chains are a system of organizations, persons and
events that interactdfrom food production to the consumption of
food and food products (Kozlenkova et al., 2015). These systems
support much of the world's economy, delivering important ben-
efits to persons at all socio-economic levels of life.

Various reports describe factors that have influenced the
development of modern supply chains, including market compe-
tition, regulation, procurement, supply chain strategies, economics,
and technology (MacCarthy et al., 2016). Undoubtedly, technolog-
ical innovation has had a major role in structuring more effective
supply chain networks via digital technology, particularly in the
transfer of information among supply chain actors.

Beginning in the 1990s, the Internet presented a platform for
major advances in managing supply chains, facilitating highly
efficient movement of information across multiple actors. Subse-
quently, the ability to trace the movement of food products was
realized with the creation of Automatic Identification and Data
Capture (AIDC) systems (Epelbaum and Martinez, 2014), recog-
nized today as bar codes, two-dimensional Quick Response (QR)
codes, and Radio Frequency Identification (RFID) tags. Each of these
developments innovated supply chain systems by improving effi-
ciencies in identifying the movement of products in time and space
(Regattieri et al., 2007). However, AIDC devices alone do not convey
how the environment influences food stability. Instead, they must
be coupled to sensors that detect characteristics of the environ-
ment which impact food safety and quality.

While product temperature is an obvious parameter influencing
microbial growth, others factors include pH, water activity, atmo-
sphere, and nutrient level. Similar factors can also affect product
quality, even in the absence of microbial growth, such as the effect
of atmosphere on lipid oxidation that impacts taste and color. Food
quality can also be impacted by actions earlier in the supply chain.
For example, during the transport of cattle from farm to abattoir,
animals can be stressed from rough transport, causing glucose
levels in beef muscle to markedly decrease. This results in high pH,
dark-cutting, low quality meat. In such cases, vibrational sensors
embedded in trucks can identify causes of poor food quality.

In each of these cases, information from supply chain sensors
must be translated into useful interfaces that show the user how
environmental factors affect food safety and quality. This can be
accomplished through mathematical algorithms (i.e. predictive
models), which describe changes in food quality as a function of the
environment.

4. Predictive tools

4.1. Predictive microbiology

Predictive microbiology, a sub-discipline of food microbiology,
provides a quantitative and condensed description (i.e. mathe-
matical equation) of themicrobial ecology of food (McKellar and Lu,
2003; McMeekin et al., 1993). This is accomplished by measuring
the kinetics of microbial behavior, or the probability of growth/
inactivation (i.e. stochastic), under a defined set of conditions, and

then translating this information into mathematical equations that
describe microbial behavior as a function of the environment
(Koyama et al., 2017; Mataragas et al., 2015; McMeekin et al., 1993;
McKellar and Lu, 2003; Parra-Flores et al., 2016).

Predictive models are commonly produced to describe micro-
bial growth and inactivation, as influenced by specific environ-
mental conditions (e.g. temperature, pH, water activity). The
change in microbial numbers is typically segmented into kinetic
parameters, including lag time, growth rate (or inactivation rate),
and maximum population density. This is most accurately and
easily done using ‘primary’ curve-fitting software, such as DMFit
(http://browser.combase.cc/DMFit.aspx).

After generating primary curves over a range of environmental
conditions relevant to how the model will be applied, kinetic pa-
rameters are translated into ‘secondary’ models that describe
changes in parameters as a function of the environment (e.g. the
change in growth rate as a function of food storage temperature).

Then, based on the secondary and primary models, a ‘tertiary’
model is produced, which becomes the interface between the
model and the end-user, in which environmental values are
entered that result in estimations of microbial growth. Examples of
tertiary model interfaces include Excel spreadsheets such as the
American Meat Institute's process lethality calculator (http://www.
amif.org/), and stand-alone software, such as ComBase Predictor
(http://browser.combase.cc/ComBase_Predictor.aspx?model¼1)
and the USDA Pathogen Modeling Program (https://pmp.errc.ars.
usda.gov/PMPOnline.aspx).

4.2. Examples of predictive models developed for supply chain
management

More than 700 predictive models have been reported with po-
tential applications for food (https://foodrisklabs.bfr.bund.de/
index.php/openfsmr/). These are found in publications, in stand-
alone software, and online. They include models based on micro-
bial growth/inactivation in bacteriological media and in specific
food matrices. However, few models have been applied and vali-
dated for use in supply chains (Taoukis et al., 1999; Tsironi et al.,
2008), especially for food transport. The section below describes
two models designed to estimate microbial growth in seafood and
meat supply chains.

4.2.1. Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas)
Vibrio parahaemolyticus is a bacterium that naturally occurs in

marine environments and causes human disease from the con-
sumption of raw molluscan shellfish, most notably oysters (USFDA,
2005). Research shows that the ecology of V. parahaemolyticus is
strongly influenced by seawater temperature and salinity (Kaspar
and Tamplin, 1993). As a result, both pre- and post-harvest risk
mitigation strategies have been developed to control the growth of
V. parahaemolyticus in oysters (USFDA, 2009).

Scientists in the US conducted research to manage
V. parahaemolyticus risk, producing a predictive model for the
growth of V. parahaemolyticus in the American oyster (Crassostrea
virginica) (Parveen et al., 2013). Related models estimate
V. parahaemolyticus levels in oysters, as a function of seawater
surface temperature (USFDA, 2005). These tools, as well as others,
have been used as part of voluntary control plans aimed at man-
aging V. parahaemolyticus levels at the time of harvest (USFDA,
2009). While these models have demonstrated utility for
V. parahaemolyticus levels in the American oyster, it cannot be
assumed that they apply to other oyster species, and/or other
oyster-growing environments, without validation.

In response to this problem, Fernandez-Piquer et al. (2011)
developed a predictive model for the growth of
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