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A B S T R A C T

Building mathematical models in predictive microbiology is a data driven science. As such, the experimental
data (and its uncertainty) has an influence on the final predictions and even on the calculation of the model
prediction uncertainty. Therefore, the current research studies the influence of both the parameter estimation
and uncertainty propagation method on the calculation of the model prediction uncertainty. The study is in-
tended as well as a tutorial to uncertainty propagation techniques for researchers in (predictive) microbiology.
To this end, an in silico case study was applied in which the effect of temperature on the microbial growth rate
was modelled and used to make simulations for a temperature profile that is characterised by variability. The
comparison of the parameter estimation methods demonstrated that the one-step method yields more accurate
and precise calculations of the model prediction uncertainty than the two-step method. Four uncertainty pro-
pagation methods were assessed. The current work assesses the applicability of these techniques by considering
the effect of experimental uncertainty and model input uncertainty. The linear approximation was demonstrated
not always to provide reliable results. The Monte Carlo method was computationally very intensive, compared to
its competitors. Polynomial chaos expansion was computationally efficient and accurate but is relatively com-
plex to implement. Finally, the sigma point method was preferred as it is (i) computationally efficient, (ii) robust
with respect to experimental uncertainty and (iii) easily implemented.

1. Introduction

During the last decades, researchers in the field of predictive mi-
crobiology have focused on developing and fine-tuning a wide range of
mathematical models that contribute to the assessment and prediction
of microbial food safety and quality. Currently, there is a wide interest
in moving towards mechanistic modelling methods such as individual
based models (e.g., Kreft et al., 1998; Tack et al., 2015) or systems
biology approaches (e.g., Brul et al., 2008; Vercammen et al., 2017). In
practice, however, the state-of-the-art for real life application will re-
main for a considerable time the use of grey box models. These grey box
models are built to deliver a simplified representation of the relevant
microbial response (e.g., growth rate, inactivation rate, probability of
growth). Grey box models require experimental data to select mathe-
matical model structures and to estimate the most suitable combination
of model parameters. As such, building mathematical models in the
field of predictive microbiology will remain, for the time being, a data
driven science.

The experimental data used to build a mathematical model will
influence the choice of the model structure and the estimated values of
the model parameters. As such, the experimental data also influences
the model predictions that will be obtained. Knowing this, several
publications have focused on assessing the quality and validity of the
models that are obtained. For example, Ross (1996) developed indices
to evaluate the accuracy and bias of models based on the predicted
generation time. Apart from the accuracy, also variation plays an im-
portant role when modelling microbial responses. The sources of var-
iation in predictive microbiology were distinguished as follows by Van
Impe et al. (2001): (i) the type and quantity of microorganisms in the
initial microbial load, (ii) the true intrinsic and extrinsic conditions that
characterise a food product, (iii) the lack of observations both in the
monitoring points and the number of samples, (iv) random noise which
inevitably corrupts measurements. The sources of variation can be ca-
tegorised as uncertainty or variability. Uncertainty refers to the preci-
sion with which a state or parameter is known (e.g., error on an ex-
perimental measurement) and variability refers to the natural variation
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of a variable or process (e.g., microbial growth rate).
Due to the inevitable presence of variation in building predictive

models, it is generally deemed important to assess the accuracy of the
model predictions. This is often simplified to finding the confidence
intervals of the parameter estimates. The confidence intervals of the
parameter estimates (or simply the variation of the parameter esti-
mates) can lead to the calculation of the uncertainty on the model
prediction. As such, the user of a predictive model can be provided with
an estimate of, e.g., a 95% confidence interval of the model prediction.
The determination of this uncertainty is indispensable when using
predictive models for quantitative microbial risk assessments
(Zwietering, 2015). As (the uncertainty on) the estimated values of the
model parameters are determined by (the uncertainty on) the experi-
mental data, also the calculated uncertainty on the model parameters
and model prediction will be determined by the experimental data.
Consequently, it is worth wondering how to ensure that the provided
uncertainty is actually reliable.

This research studies how a reliable determination of the prediction
uncertainty can be obtained. The focus lies on modelling and predicting
the growth of microorganisms as a function of temperature, but the
results should be transferable to other conditions and to modelling of
microbial inactivation as well. However, further research should be
performed to confirm the conclusions of this research for other appli-
cations. It is worth noting that an accurate determination of the model
prediction uncertainty will become more difficult for more complex
models (e.g., in case of multiple influencing variables and interactions).
Two steps in the modelling procedure are investigated with respect to
their influence on determining the model prediction uncertainty: (i) the
parameter estimation method and (ii) the uncertainty propagation
method. These are deemed most influential on the calculation of the
prediction uncertainty. For this purpose, a case study was applied in
which a mathematical model was built for the effect of temperature on
the microbial growth rate and used to predict microbial growth for a
temperature profile that is characterised by variability. This research
also is meant to serve as a tutorial to uncertainty propagation techni-
ques for scientists working in the field of (predictive) microbiology.

2. Materials and methods

For the current research, data is simulated according to the protocol
explained in Section 2.1. The parameters of the predictive model will be
estimated according to the methods explained in Section 2.2. This
section also explains the method generally used to determine the model
parameter accuracy. Finally, Section 2.3 elaborates on the different
methods for uncertainty propagation that are tested in this publication
to calculate the model prediction uncertainty.

2.1. Simulation protocol

Experiments are always simulated at the same 8 temperatures (10,
15, 20, 25, 30, 35, 40, 45 °C). At each temperature, the maximum
specific microbial growth rate μmax [h−1], which is reached during the
exponential phase of growth, is calculated according to the Cardinal
Temperature Model with Inflection (CTMI) of Rosso et al. (1993):
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In this equation, Tmin [°C] and Tmax [°C] represent the minimum and
maximum temperature that allow microbial growth. Topt [°C] is the
optimum temperature at which the optimum growth rate μopt [h−1] is
reached, as such μopt= μmax(Topt). The value of μmax [h−1] (at any
temperature) is then used to simulate a growth curve using the model of

Baranyi and Roberts (1994):
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with n(t) [ln(CFU/mL)] the natural logarithm of the population density
at a time point t [h], nmax [ln(CFU/mL)] the natural logarithm of the
maximum population density and q(t)[−] the natural logarithm of the
physiological state of the cell. The initial values of n(t) and q(t) are
respectively n0 and q0. Nominal values for Tmin, Topt, Tmax, μopt, n0, q0
and nmax were chosen arbitrarily for a hypothetical microorganism and
are listed in Table 1. Growth curves were simulated until the population
density reached a value approximating the nominal nmax. In these
growth curves, 8 samples were taken at equidistant time points.
Gaussian noise with zero mean was added to these samples to simulate
the variation of the experimental data. The standard deviation of the
Gaussian noise was taken equal to 0.28 ln(CFU/mL) based on the mean
squared error of previous (unpublished) parameter estimation results
with secondary models for growth. Discrepancy between the model
structure and the microbial system under study is not considered in this
research. Also the effect of the experimental design was not considered
in this research.

The simulations used to compare different methods for assessing the
propagation of uncertainty from experimental data to model predic-
tions (Section 3.2) are based on a temperature profile that is char-
acterised by variability as well. An arbitrary temperature profile was
selected for these simulations to mimic the food chain of a product that
is kept at refrigeration temperatures. The different steps of the tem-
perature profile are listed in Table 2. Fig. 1 illustrates the temperature
profile with all parameters at their mean value. The durations of each
step was considered to have a uniform distribution. Both the linear
approximation and the sigma point method (described in Section 2.3)
rely on the mean value and variance for their computations. As such,

Table 1
Nominal parameter values of the CTMI and the model
of Baranyi and Roberts (1994).

Parameters Values

Tmin [°C] 2.3
Topt [°C] 40.6
Tmax [°C] 45.5
μopt [h−1] 0.623
n0 [ln(CFU/mL)] 7.00
q0 [−] −1.00
nmax [ln(CFU/mL)] 22.55

Table 2
Five different steps of the temperature profile used to simulate microbial
growth as a function of time with prediction uncertainty. Normal distributions
are marked with their mean and variance and uniform distributions with their
lower and upper bound.

Description Temperature [°C] Time [h],
uniform
distribution

Time [h],
approximate
normal distribution

Storage after
production

N(6.0,1.5) U(10.00,22.00) N(16.00,3.462)

Transportation to
shops

N(10.0,1.0) U(0.50,4.00) N(2.25,1.012)

Storage in shops N(6.0,1.0) U(1.00,168.00) N(84.50,48.212)
Transport to

customer's
home

N(20.0,2.0) U(0.08,1.00) N(0.54,0.262)

Storage at home N(7.0,1.0) Remaining time
of total 240 h
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