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A B S T R A C T

The paper concerns with regime shifts between multiple attractors in ecological predator–prey models and
hysteresis phenomena caused by evolution. We present a survey of eco-evolutionary models with an adaptive
trait affecting the prey defence or activity that influence predator functional response and give overview of
typical consequences of the trait evolution to the predator–prey dynamics together with important references to
related adaptive dynamics research. The selection and mutation process is modelled by a resident-mutant model
(possible mutant invasion into a monomorphic resident population). Model derivations are given in detail for all
of the common functional responses (Holling’s type I, II, III and generalized). Different types of adaptive trait
value dependences with respect to transient dynamics are distinguished according to the effect to the eco-system:
we prove that if the prey adaptive trait evolution influence only the functional response of the predator, stable
dynamics and irreversible abrupt regime changes are typical, whereas reversible regime shifts or more complex
dynamics caused by adaptivity of the prey trait occur for trait adaptations that bring an advantage against
predator together with intraspecific competition asymmetry. We confirm possibility of hysteresis eco-evolu-
tionary cycle, persistent oscillations between different attractors of the ecological subsystem driven by adaptive
trait dynamics.

1. Introduction

Population dynamics is an important part of biology. Population
growth and ecological interactions are still studied throughout last
decades enormously although the basic principles and ideas are known
for more than a century. The fundamental works that concern the laws
of exponential and logistic population growth of one-species popula-
tions or the basic interaction models have been modified, generalized
and reformulated many times. Google Scholar returns almost 5 million
links for the search phrase “population growth model”! A considerable
part of the research on population dynamics addresses the question of
the determinants of population growth and of the interactions among
populations. Apart from this general qualitative approach more specific
models are used, especially for the purposes of management and con-
trol, see e.g. coral-algae growth models (Mumby et al., 2007)), specific
food-chain models (Kuznetsov et al., 2001) and so on. New effective
technologies allow us to study individual-based models, see e.g.
Grimm et al. (2003) and to accomplish computer simulation models as
in e.g. Boit et al. (2012).

A typical system that describes a dynamical population model
(when spatial distribution is omitted) is a system of parameter depen-
dent ordinary differential equations

=n ϕ n a˙ ( , ), (1)

where n is a population density vector of species in the ecosystem and a
is a vector of parameters as birth rates of particular species, their car-
rying capacities and so on. There is a plenty of studies of such systems
that analyse dependence of the long-term behaviour on parameters (see
e.g. Boukal et al., 2007; Kar, 2006; Mohammed et al., 2018; Mumby
et al., 2007; Rinaldi et al., 1993; Scheffer et al., 1997 and many others).
These works give insight to the principles involved, give possibilities to
manage and control the systems, but also show that rapid changes and
unexpected behaviour can happen. As a good and well-known example
may serve the spruce budworm model introduced in
Ludwig et al. (1978) that explains hysteresis loops in the dynamics of
the population density of the budworm or variety of prey–predator
models with stable limit cycles (Abrams and Walters, 1996; Boukal
et al., 2007; Rosenzweig and MacArthur, 1963; Steele and Henderson,
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1992 and others). Besides the multiple equilibria and the limit cycles,
more complex behaviour can be observed in some models: multiple
cycles and other attractors are studied in e.g. González-Olivares and
Rojas-Palma (2011) and the presence of chaotic dynamics in ecological
models is shown in some ecological models (see e.g. Hastings and
Powell, 1991; Huisman and Weissing, 2002; Kuznetsov et al., 2001).

Evolution as a change in the inherited traits of biological popula-
tions give the species possibility to adapt to their environments by
means of natural selection. During the last two decades techniques
based on game theory were developed and they are referred to as
adaptive dynamics techniques (see e.g. Dercole and Rinaldi, 2008;
Dieckmann and Law, 1996; Geritz et al., 1997; Metz et al., 1995). They
link population dynamics to evolutionary dynamics for understanding
the long-term ecological and evolutionary consequences of small mu-
tations in the traits expressing the phenotype. Although the adaptive
dynamics theory is still in development (for new results see e.g.
Della Rossa et al., 2015; Dercole, 2005; Dercole, 2016; Dercole et al.,
2016; Geritz et al., 2016), already obtained results have often been
surprising and have given a very promising insight into the complexity
of nature. There are also possibilities to use the adaptive dynamics
techniques in other fields as economics, since for example innovations
of products may be viewed as adaptive traits and the market equilibria
existence and stability depend on the innovation dynamics (see
Dercole et al., 2008).

In this paper an ecosystem (1) is considered in this eco-evolutionary
context. The species are affected by adaptive change in the trait that
creates feedback between the evolutionary and population dynamics.
Generally, the adaptive changes in traits are described by so called
canonical equation (Dieckmann and Law, 1996), a system of equations

=x g n a x˙ ɛ ( , , ), (2)

where x is generally a vector of traits of the resident species. Hereafter,
only one main trait is considered, so the equation is scalar. The evo-
lution process does not have the same timescale as the population dy-
namics, so the parameter ε>0 scales the rate of evolutionary change.
Usually ε≪ 1 and Eq. (2) is slow with regard to the ecological timescale
of Eq. (1). Function g is explained in more detail in the next section, for
now it is enough to mention that it covers the feedback of the popu-
lation dynamic process and that it is generally nonlinear. This feature is
responsible for bifurcations.

Bifurcations connected to adaptive trait can be responsible for re-
gime shifts in ecosystem (1). Trait value x may affect the vector para-
meter a and so it can be (at least locally) considered as a function

=a a x( ). The trait value influences the population dynamics
throughout this dependence. If ecosystem (1) reaches a stable equili-
brium for a specific trait value xr of the monomorphic resident popu-
lation, the system stays at the stable equilibrium until that trait value
belongs to an evolutionarily stable strategy. This condition may be
violated and the feedback between population and adaptive dynamics
can cause transitions from one regime to another (Dercole, 2003),
abrupt and unexpected changes of population densities (Dercole, 2005;
Parvinen, 2005), diversification of the species to polymorphic popula-
tions (Dercole et al., 2016; Gallien et al., 2018; Landi et al., 2013 or
Hui et al., 2017) and so on.

In this study we focus on monomorphic populations with slow
adaptive change of the trait that is strongly connected to some para-
meters of the population dynamic model (1). Of course that it is not
sufficient to answer even basic questions about the persistence of the
population or its stabilization at some equilibrium or attractor by
analysis of the eco-system alone if mutations are taken into account (for
example in Dercole et al., 2003; Landi et al., 2013 Rosenzweig-Ma-
cArthur model was transformed into a resident-mutant model by adding
a third equation for the mutant population and it was shown that the
evolutionary model is much richer than the resident population model).
The aim of this survey is not only to present different types of ecological
regime transitions between multiple ecological attractors caused by

adaptive dynamics, but also to distinguish typical cases when ecosystem
stays stable and when the evolution causes reversible or irreversible
transients. We prove that for one specialized adaptive trait changes (for
example if the trait adapts specially to prevent the prey against pre-
dators and does not significantly affects other parameters of the eco-
system), only the stable case or an irreversible regime shift is possible,
whereas reversible regime shifts or more complex dynamics caused by
adaptivity of the prey trait occur for trait changes that bring in ad-
vantage against predator together with intraspecific competition
asymmetry.

The analysis of a population dynamic model is, of course, a first step
to understand the long-term behaviour of an ecosystem, especially in
cases of more complex dynamics with multiple or chaotic attractors.
Quasi-equilibria and quasi-attractors of the fast subsystem are essential,
but the transitions between them depend on the adaptive dynamics (the
slow system) strongly. Generally, the trait values are not the parameters
of the population dynamic model, but the parameters are functions of
the trait values. Adaptive dynamics works according to evolutionary
game theory principles and that explains why additional slow non-
linear equations give feedback to the population dynamics. The slow
dynamics shift the parameters of the fast population dynamic sub-
system that tends to stabilize on quasi-attractors, but different types of
regime transitions may happen. These transitions are not the same as
the transitions caused by parameter shifts at the population dynamic
subsystem (usually described by bifurcation diagrams of population
models). As a prototype example of an evolving community, a prey–-
predator community with multiple attractors at the population dynamic
subsystem is taken. The adaptive dynamics involve one trait of the prey
that affects the parameters of the functional response of the predator.
Such a model serves as a good demonstrative example, because the
modelled situation is easy to imagine and also to explain. One may
imagine the mutant prey phenotype change as getting stronger through
a genetic mutation and selection process and therefore the new resident
prey with adapted trait is able to defend itself more effectively from a
predator. It is clear from this example, that the handling time, the en-
counter rate parameters or other parameters in the functional response
may be influenced and varied by the trait value. This parametric change
may significantly affect population dynamics near local bifurcation of
the resident equilibrium.

We present cases with qualitatively preserved eco-dynamics and
also cases with expected irreversible regime transitions. We also present
an example of a system, when adaptive dynamics induce hysteresis and
periodic regime shifts. The presented results are in agreement with
Dercole et al. (2002) and Muratori and Rinaldi (1991). More complex
dynamics may occur (see Dercole et al., 2010; Wilsenach et al., 2017 or
Dercole and Rinaldi, 2010).

2. Adaptive dynamics and slow-fast eco-evolutionary system

We assume the resident population model as the system (1) of the
form

=n ϕ n a˙ ( , ),

where = ⋯n n n( , , )N1 is a population density vector for an arbitrary
number N of species (the species are characterized by an index

= ⋯i N1, , ) and = ⋯a a a( , , )m1 is a vector of parameters. The change
in the population size or density is described by function

→+ϕ: ,N m N  that is a smooth enough function dependent on para-
meters such as the birth and the death rates of the species, carrying
capacities and various parameters of functional responses. The para-
meters =a a x( ) of the system (1) are functions of the resident trait
value =x xr . We assume that system (1) dynamics is fast, so the re-
sident population settles in a dynamical equilibrium =n n x* * ( ).

Mutations are assumed to be sufficiently rare, but once a mutant has
entered the population, it may grow or go extinct according to the in-
vasion exponent (fitness) of mutants in the resident population. The
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