
Contents lists available at ScienceDirect

Ecological Complexity

journal homepage: www.elsevier.com/locate/ecocom

Original research article

Spatio-temporal pattern formation in predator-prey systems with fitness
taxis

Irene T. Heilmanna,b, Uffe Høgsbro Thygesena,b, Mads Peter Sørensen⁎,a

a Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
b Center for Ocean Life,National Institute of Aquatic Resources, Technical University of Denmark, Denmark

A R T I C L E I N F O

Keywords:
Pattern formation
Predator–prey systems
Fitness taxis
Cross-diffusion

A B S T R A C T

We pose a spatial predator–prey model in which the movement of animals is not purely diffusive, but also
contains a drift term in the direction of higher specific growth rates. We refer to this as fitness taxis. We conduct
a linear stability analysis of the resulting coupled reaction–advection–diffusion equations and derive conditions
under which spatial patterns form. We find that for some parameters the problem is ill posed and short waves
grow with unbounded speeds. To eliminate this, we introduce spatial kernels in the model, yielding coupled
integro-differential equations, and conduct a similar stability analysis for this system. Through numerical si-
mulation, we find that a variety of patterns can emerge, including stationary spatial patterns, standing and
travelling waves, and seemingly chaotic spatio-temporal patterns. We argue that fitness taxis represents a simple
and generic extension of diffusive motion, is ecologically plausible, and provides an alternative mechanism for
formation of patterns in spatially explicit ecosystem models, with emphasis on non-stationary spatio-temporal
dynamics.

1. Introduction

Most populations in nature are not homogeneously distributed in
space, but cluster together in patterns of different shapes. These pat-
terns can arise as a response to heterogeneous environments
(Cobbold et al., 2015), but they can also emerge in homogeneous en-
vironments through self–organization. For example, young mussel beds
in a tidal area (van de Koppel et al., 2005) display stripe–like patterns,
even if there are no prior features in the habitat within the beds that can
explain why mussels exist in the stripes but not between them. The
mechanism for this pattern formation is mutual protection against wave
disturbance, giving positive feedback on short spatial scales, combined
with competition between mussels for algal resources, giving negative
feedback on longer scales (Martínez-García et al., 2015). The me-
chanism is therefore an example of scale-dependent feedback, a general
principle behind pattern formation (Rietkerk and van de Koppel, 2008).

When patterns emerge in homogeneous environments, they can be
seen as an inherent property of the system, as the example of mussel
beds demonstrate. Several mechanisms, both generic and specific, have
been proposed for pattern formation in homogeneous landscapes. For
example, Young et al. (2001) considered the clustering that emerges in
spatial birth/death processes, while Rietkerk et al. (2002) analyzed the
vegetation patterns that may emerge in arid landscapes when the

vegetation simulates the absorption of surface water in the soil. Spatio-
temporal patterns may emerge when diffusion modulates unstable local
population dynamics (Petrovskii and Malchow, 1999). Pattern-forming
models may be either individual-based or population-based, and in
some cases it is possible to establish the connection between the two
levels (Martínez-García et al., 2015). One archetypal mechanism for
self-organized patterns is the Turing diffusion-driven instability in
partial differential equations of reaction–diffusion type. Turing (1952)
originally conceived this as a mechanism for pattern formation in
chemical systems, specifically explaining morphogenesis. The classical
Turing patterns assume stable reaction dynamics in the absence of
spatial effects, while the feedback between the reaction dynamics and
transport gives rise to an instability which ultimately leads to stationary
spatial patterns. The Turing mechanism has also been considered in
trophic systems, first as a hypothesized mechanism for patchiness in
plankton communities (Levin and Segel, 1976; Malchow, 1993). In such
models, the Turing diffusion-driven instability may appear in con-
junction with a Hopf bifurcation in the reaction dynamics (e.g.,
Banerjee and Petrovskii, 2011), and the combination of these two in-
stabilities may give rise to large variety of spatio-temporal patterns,
including irregular chaotic type patterns (Huang et al., 2017).

While the Turing mechanism has a prominent role in the literature
on spatial pattern formation in ecological models, its relevance for
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predator–prey systems can be questioned from an evolutionary per-
spective. In Turing models, the diffusion term, which corresponds to
random unbiased movements of individuals, always leads to a net mi-
gration of individuals from regions with higher densities to regions with
lower densities, and this transport is crucial for maintaining the sta-
tionary spatial patterns. When stationary Turing patterns have formed,
the regions with high densities also have positive surplus production.
This surplus production is then transported by diffusion to regions with
low densities, where the surplus production is negative. This state
cannot be evolutionary stable; mutants with lower diffusivity would be
able to invade; an observation that was made in a single-species context
by Hastings (1983). While dispersal may have other advantages such as
avoidance of inbreeding (Gandon, 1999), it appears implausible that
animals should accept diffusion to move them from regions with posi-
tive production to regions with negative production. A fair generalizing
statement is that the more data becomes available on the movements of
a particular organism, the less plausible is the hypothesis of pure dif-
fusion (Turchin, 1998), and even organisms as primitive as bacteria and
algae are capable of directing their motion towards more attractive
regions (Brown and Berg, 1974; Eggersdorfer and Häder, 1991; Kay
et al., 2008). For predators searching for heterogeneously distributed
prey, simple postulates about the microscale behavior may lead to a
directed motion on the macroscale towards higher prey densities
(Kareiva and Odell, 1987). From the point of view of pattern formation,
this raises the question if patterns can emerge in models where such
directed motion is included. One approach to this question involves
cross-diffusion terms, modeling pursuit–evasion movements in pre-
dator-prey models (Biktashev et al., 2004; Tsyganov et al., 2004),
which may lead to a quasi-soliton type of wave that is not seen in re-
action–diffusion systems. Regarding the possibility of pattern formation
in such predator–prey models, a taxis of predators towards higher prey
concentrations has been shown not to destabilize the uniform steady
state (Ainseba et al., 2008; Lee et al., 2009; Wang et al., 2015).

The assumption behind the present paper is that the movements of
predators and prey are neither completely random nor a response to
just the other species, as in pursuit and evasion, but also a response to
the densities of conspecifics. We propose the notion of fitness taxis as a
conceptually simple and reasonably generic movement model. Here, we
take fitness taxis to mean motion in the direction of the spatial gradient
of the specific growth rate, modeled by including an advective term in
the flux of organisms. While this model is not intended to accurately
describe actual movements of specific organisms, it appears to be a
useful first generalization of pure diffusion models. Our model thus
continues in the direction set out by Cosner (2005), who considered the
evolutionary stability of dispersal strategies and in particular taxis
terms that relate to the specific growth rate. A similar reasoning let
Armsworth and Roughgarden (2005) to consider a corresponding two-
patch model. Later Cantrell et al. (2008) used a similar advective term
in a model of a single species and investigated the effect of hetero-
geneous environment, and (Cantrell et al., 2013;
JonathanÂ T.Â Rowell, 2010) extended to two competing populations.
The overarching question initiating our work is if and how spatial and
spatiotemporal patterns may form in predator-prey models, when each
species performs fitness taxis. A similar question was addressed by
Abrams (2007) in the context of a two-patch system with three trophic
levels; there, spatiotemporal patterns were found.

Our predator–prey model consists of two coupled re-
action–advection–diffusion equations and the initial model is local,
corresponding to predators only consuming prey which are at the same
location as the predator. It turns out that for some parameter combi-
nations, this system is not well posed; the growth rate of spatial dis-
turbances diverges as the wave number diverges. We circumvent this
problem by allowing the predator to consume prey within a specified
spatial range, introducing a spatial kernel which describes the rate with
which predators at one location encounter prey at a different location.
Thus, the growth rate of predators depend on an integral over space of

the prey densities, and the mortality of prey depend on a similar in-
tegral of predator densities. Similar non-local models have been studied
previously (Banerjee and Volpert, 2016a; 2016b; Grindrod, 1988;
Malchow et al., 2008). The integral operator effectively smooths out
small-scale fluctuations in densities and thus renders the system well-
posed, as has been shown for a single-species model (Cantrell et al.,
2008; Cosner and Winkler, 2014).

The outline of the manuscript is as follows: First, we pose a local
predator–prey model with fitness taxis, and conduct a stability analysis
of the spatially uniform equilibrium solution. Next, we pose the non-
local model based on a spatial kernel and conduct a similar stability
analysis. Further, we perform numerical simulations of patterns in one
spatial dimension. Finally, we offer some conclusions.

2. Fitness taxis in a generic predator-prey model

We study a predator–prey system where animals move both ran-
domly and towards higher values of their individual fitness, quantified
through their specific growth rate. The model is
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for the prey density u(x, t) and the predator density v(x, t) in space x∈Ω
for time t>0. Here, the functions f and g are the specific growth rate of
prey and predators, respectively, while Du, Dv≥ 0 are the diffusion
coefficients. The second term in each equation is what we term fitness
taxis: The animals move up the gradients of f and g, respectively, with
the taxis coefficients γu, γv≥ 0 expressing the magnitude of the effect.
Since the fitness f(u, v) of the prey (say) depends on the local density of
both prey u and predators v, the directed movement of the prey will be
affected by gradients in both the prey and predator population. For the
analysis of the model, we consider the one-dimensional space domain

�∈ =x Ω .

3. Linear stability analysis

Pattern formation in the system (1) may be investigated with a
standard linear stability analysis (Cross and Hohenberg, 1993; Segel
and Jackson, 1972) of a non-trivial equilibrium solution =u x t u( , ) *,

=v x t v( , ) *, where u*>0, v*> 0, and = =f u v g u v( *, *) ( *, *) 0.
Linearization of the system (1) gives
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where u x t( , ),͠ v x t( , )͠ are small perturbations from the equilibrium (u*,
v*), and = ∂

∂f u v* : ( *, *),u
f
u etc. For a harmonic perturbation with wave

number k, the dynamics are governed by a stability matrix M(k) given
by

= + −M A T Dk k k( ) .2 2 (3)

Here the matrices A, T and D describe population dynamics, fitness
taxis and diffusion, respectively. Note that both taxis and diffusion scale
with the wave number k squared. The matrices are given by
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Notice the relation =T Aγ γdiag( , )u v between the matrices describing
population dynamics and fitness taxis. We are interested in pattern
formation induced by movement, i.e. the existence of a wave number
k≥ 0 such that M(k) is unstable, while the population dynamics given
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