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A B S T R A C T

A graphical method was developed to determine the six landmarks of pre-image population analysis (PPA)
(Levins, 2000; Levins et al., 2013), using consecutive time series of abundance data. PPA offers an opportunity to
assess the chance that a population exhibits chaotic dynamics, increasing the uncertainty of predictions and/or
the success of management interventions. The proposed method was designed for the simplest non-linear dif-
ference equation [ = −+x rx x(1 )n n n1 ], a prerequisite of which is that the population describes a unimodal shape
in the interval map, involving positive/negative self-feedback and a discontinuous breeding (discrete) pattern.
Many different mathematical unimodal forms (shapes) and relations among landmarks can be found in the
interval map. The unimodal shape was constructed through three segments: the first segment starts at zero on the
xn axis and rises until the peak value; the second segment links the peak with the equilibrium value (∼average
abundance); the last segment connects the equilibrium and 1.0 on the xn axis. The method was applied with two
(not real) abundance data sets of one species inhabiting different habitats. Using this graphical method, it was
analytically possible to determine that a similar man-made intervention could erase or cause chaotic population
dynamics, helping identify when and to what extent we can intervene. We propose this method for PPA as a
complementary tool, which can aid in single-species management decisions and the adoption of conservation
practices.

1. Introduction

Pre-image population analysis (PPA) was developed by
Levins (2000) and Levins et al. (2013) to assess the impacts of human
intervention strategies on the dynamics of populations that one wants
to manage. The principal requirement is that populations describe a
unimodal pattern and the method considers those cases in which the
dynamics of a population are represented by the following general
equation:

=+x f x( ),n n1 (1)

where xn is the population abundance at time n, the function f(x) is non-
negative, [f(0)=0] and xn+1 is the abundance in the next time period
n+1. The unimodal dynamics in the interval map mean that f(x) starts
at zero, rises to some peak value and then declines asymptotically to-
wards zero (Fig. 1a), involving positive and negative self-feedbacks
(May, 1976; Levins et al., 2013). Therefore, it is possible to find many
different mathematical unimodal forms (shapes) for f(x) (Fig. 1a)
(Levins, 2007; Levins et al., 2013). PPA is a qualitative-based approach
to understanding population dynamics from the shape of the curve f(x).

In this case, the curve is related to the following six landmarks:
x*=equilibrium (∼average values) (blue line), P (peak) at which f(x)
reaches its maximum magnitude (green line), the maximum value,
M= f(P), and the minimum value, m= f(M) (both constitute the in-
terval of the permanent region) (red lines), y-1=pre-image 1 [x*= f(y-
1)], and y-2=pre-image 2 [y-1= f(y-2)] (blue lines) (Fig. 1b). In order
to determine graphically y-1 and y-2, we start from equilibrium x*, then
a parallel line to xn axis back to the curve f(x), next a parallel line to
xn+1 axis to the bisector xn= xn+1, obtaining y-1 on xn axis; then again
horizontally back to the curve f(x) next vertical line to bisector ob-
taining y-2 on xn axis (blue lines). For further detail, see
Levins et al. (2013). If y-2 lies within the permanent region (that is, if
y-2>m), the population dynamics are chaotic, satisfying the criterion
for the determination of chaos given by Li and Yorke (1975), the se-
quence of which is x3< x0< x1< x2. Whereas the local stability of an
equilibrium value depends on the slope of the intersection between the
unimodal shape and the bisector ( = +x xn n 1), the chaotic properties
depend on the relations between the six landmarks and/or the form of
the shape; therefore, it is possible to have a shape that gives a locally
stable equilibrium and yet is chaotic (Levins, 2007). Fig. 1b shows the
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six landmarks using the simplest nonlinear difference logistic equation:

= −+x rx x(1 ),n n n1 (2)

where r is the population growth rate and xn and xn+1 are similar to Eq.
(1). Eq. (2) requires non-overlapping generations. This prerequisite is
achieved as many invertebrate species breed once per year and the
whole population size structure is constituted by several cohorts (gen-
erations). In spite of this restriction, Eq. (2) could be still used with
reasonable agreement between observed and predicted data, as de-
scribed by Çambel (1993).

Human interventions in natural populations induce changes not
only at the population level, but also in the relationships with other
species in the community and/or ecosystem (Levins et al., 2013; Ortiz
and Levins, 2011, 2017). An intervened population reacts by changing
principally its equilibrium values, size/age structure, spatial distribu-
tion, growth parameters, reproduction output and local and global
stability; it also presents periodic oscillations and even cause or elim-
inate chaotic dynamics (Levins, 2000; Levins et al., 2013). Although the
abundance of any population naturally oscillates around its equilibrium
value (average abundance) (Lewontin and Levins, 2007a,b), changes
over years (time series of abundance) could offer an opportunity to
assess the chance that a population exhibits chaotic dynamics, in-
creasing the uncertainty of predictions and/or the success of manage-
ment interventions (Levins, 2000). Likewise, if populations are in-
tervened yearly (reduced, exploited and re-stocked), it is possible to
evaluate the consequences of past management strategies and how they
could be improved in the future.

Chaos refers to a particular class of mathematical phenomena
within a subdiscipline of nonlinear dynamical complex systems (Patten,
1997; Levins, 2000). Nevertheless, how common chaos occurs in nature
still remains to be determined (Zimmer, 1999; Turchin and Ellner,
2000; Mandal et al., 2006; Lewontin and Levins, 2007c). Different types
of chaos can be distinguished, such as regularities in chaotic dynamics,
bounds to chaotic trajectories, correlation patterns among chaotic
variables that provide prescriptions for detecting chaos-prone or chaos-
resistant systems and strategies that suppress or promote chaotic
properties (Levins, 2000; Lewontin and Levins, 2007c). Although some
authors set chaos in opposition to order (anti-chaos) (Kauffman, 1991;
Jørgensen, 1995; Mandal et al., 2006), others consider (theoretically)
chaotic fluctuations of dynamical systems to be desirable because they
provide an opportunity for control (Mandal et al., 2006) and favour
high biodiversity (Huisman and Weissing, 2002; Vandermeer, 2006).
Yet others view chaos as beneficial, as in the rhythms of heart, con-
sidering regularities a risk factor (Levins, 2000; Peng et al., 2000).
Likewise, the dynamic stability of moving equilibriums of complex
systems may be steady, transient and even chaotic (Çambel, 1993;
Levins, 2000). In this work, we consider that either naturally or as
consequence of human intervention, any population could exhibit a
bounded non-regular oscillation of abundance (chaotic dynamics),
which will increase the uncertainty of future abundance values. Thus,
human intervention in a population exhibiting chaotic dynamics could
also reduce the bounds or even eliminate chaos.

This paper proposes a simple graphical method for applying pre-
image population analysis (PPA) using temporal abundance data series
of a species with a discontinuous breeding (discrete) pattern. It is im-
portant to note that the abundance series were generated randomly
(routine of Excel) and used only for testing the method. Although the
data sets do not represent real population dynamics, the range of values
created can be easily found in marine benthic species.

2. Methods

Fig. 1b shows a general unimodal shape of f(x) in the interval map
using Eq. (2). The proposed method for building the shape of f(x) is
through three segments (straight lines), as shown in Fig. 1c. The first
segment starts at zero on the xn axis and rises until the peak value (P);

Fig. 1. Web map for population equation of the form xn+1= f(xn), with the
equilibrium line xn= xn+1. (a) The different shape types for the unimodal
curve; (b) the six landmarks of pre-image population analysis determined di-
rectly using the curve f(xn); (c) the six landmarks of pre-image population
analysis determined using three segments (current proposed method). Note: the
hierarchical order of the six landmarks obtained in (b) and (c) is maintained.
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