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A B S T R A C T

We show how the consideration of two compartments in the well known chemostat model could lead to
non-intuitive messages in terms of performances and stability. These compartments and their
interconnections represent spatial patterns and interplay with species biodiversity. The case of an
inhibited resource is also considered, for which we also study the effect of a bio-augmentation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The chemostat model appears in the fifteens as the mathemat-
ical representation of the microbial growth in the chemostat
experimental device, invented simultaneously by Monod (1950)
and Novick and Szilard (1950). If s and x denote respectively the
substrate and biomass concentrations in a culture vessel of volume
V, their time evolution are modeled by the following system of
ordinary differential equations

_s ¼ � 1
Y
mðsÞx þ �Q

V
ðSin � sÞ

_x ¼ mðsÞx � Q
V
x

ð1Þ

where Y1 is the yield conversion of substrate into biomass, m(�) the
specific growth rate of the micro-organisms (which is non-
negative function, null only at s = 0), Q the input flow and Sin the
input concentration of substrate. Later, this model has been used to
represent many other ecosystems in natural environments (Hasler
and Johnson, 1954; Veldcamp, 1977; Higashi et al., 1998), which
have in common a continuous culture of micro-organisms. This
model (or close versions of it) is often found in bio-mathematics,

theoretical ecology or bio-processes literature (see for instance
Pirt, 1975; Panikov, 1995; Koch et al., 1998; Bastin and Dochain,
1990). More generally, it is a popular model of resource-consumer
in living sciences (although the word “chemostat” is not always
used).

The model (1) is based on several essential assumptions: (1) The
micro-organisms introduced in the vessel are of a single species;
(2) The substrate (of concentration s) is the single limiting resource
for growth; (3) The vessel is perfectly mixed; (4) Its volume is
constant (i.e. the input and output flows are both equal to Q. Many
extensions of this model have been studied to better suit real
ecosystems, introducing considerations such as species competi-
tion, multiple limiting resources, non-perfectly mixed medium,
etc. Most of the studies in bio-mathematics and theoretical ecology
have been conducted with the objective to characterize the
composition and the spatial distribution of the asymptotic
solutions (see for instance Hsu et al., 1977; Hofbauer and So,
1994; Smith and Waltman, 1995; Amarasekare and Nisbet, 2001;
Gravel et al., 2010). The performances of the related ecosystems are
usually not addressed in those theoretical studies. This is different
in bio-processes literature. Optimizing the performances is of
primer interest, but mixed cultures are rarely considered.

The objective of the present paper is to review studies of
extensions of the model (1) that have revealed “non-intuitive”
messages (in the sense that the conclusions cannot be deduced
straightforwardly from the equations) related to the performances.
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1 Without any loss of generality one can assume Y = 1 in Eq. (1) by simply

denoting the quantity X/Y by X.
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We do not pretend here to be exhaustive but we focus on situations
for which a certain kind of complexity could emerge from quite
simple ecosystems. More precisely, we consider structures of the
model (1) in a few compartments that can change radically the
behavior of the solutions and its performances. The consideration
of spatial compartments in the chemostat model (also named
gradostat which refers to the experimental device proposed by
Lovitt and Wimpenny (1981)) is not new (Stephanopoulos and
Fredrickson, 2006; Tang, 1986, 1994; Jaeger et al., 1987; Smith and
Tang, 1989; Smith et al., 1991; Smith and Waltman, 1991; Hofbauer
and So, 1994; Lenas et al., 1998; Amarasekare and Nisbet, 2001;
Nakaoka and Takeuchi, 2006; Gaki et al., 2009; Gravel et al., 2010),
but we focus here on the output performances of the systems. From
another view point, interconnected chemostats are often consid-
ered in biotechnology for optimizing the productivity (Luyben and
Tramper, 1982; Hill and Robinson, 1989; Harmand et al., 1999; de
Gooijer et al.,1996; Dramé et al., 2006; Nelson and Sidhu, 2006) but
most of the time the configurations are in series with pure culture.
In the present work, we consider more general interconnection
structures and the possibilities of having several species in
different niches. The paper is organized as follows. In Section 2,
we analyze the effect of a spatialisation described in terms of
interconnected compartments, and show how interconnection
patterns could impact the performances. In Section 3 we study the
interest for having a diversity in the compartments. In Section 4,
we consider inhibitory resources and demonstrate the role of
patterns on the ecosystem stability and its performances. Finally, in
Section 5, the bio-augmentation is analyzed in terms of another
mean that could impact the stability of the ecosystem.

2. Spatial patterns in the chemostat

In this section, we assume that the growth function m(�) is
monotonically increasing. A usual function is given by the Monod's
expression (see Fig. 11 in Appendix A):

mðsÞ ¼ mmax
s

Ks þ s
: ð2Þ

For convenience we denote the dilution rate D ¼ Q
V , and define, as it

is often made in the literature, the break-even concentration
associated to the growth function as

lðDÞ ¼ ss:t:mðsÞ ¼ D when max smðsÞ > D;
þ1 otherwise:

����
����

�

Let us first recall the classical results about the asymptotic
behavior of the solutions of the model (1) (see for instance Smith
and Waltman (1995); HLRR17). The equilibria are the wash-out
E0 = (Sin, 0) and a positive steady state E1 = (l(D), Sin� l(D)) which
exists when l(D) < Sin. Under this last condition, E0 is unstable and
any solution with x(0) > 0 converges asymptotically to E1. On the
contrary, when l(D) � Sin, any solution converges asymptotically
to E0. Therefore, a property of the model (1) is that for a given
dilution rate D, the output substrate concentration at steady state
is equal to l(D) independently of the input concentration Sin,
provided Sin to be larger to l(D). It is well known that this property
is no longer satisfied when there is spatial heterogeneity (see for
instance Lovitt and Wimpenny, 1981; Hill and Robinson, 1989
where expressions of the output concentrations at steady state
depend on the input concentration). Performances of an ecosystem
can be measured by different indexes. We consider here an index
that measures the ability of an ecosystem to convert a resource.
More precisely, for a given value Sin of the resource density at the
inlet, we define its output density at steady state, denoted s$out , as
the performance index. To grasp the effect of spatial structures on

this performance index, we consider three patterns depicted in
Fig. 1 for a given total volume V and input flow rate Q.

We compare the smallest value s$out for each configuration. For

the single tank configuration, s$out is simply given by l(Q/V). For the

serial configuration, s$out is function of the volume ratio r = V1/V. For

the parallel configuration, s$out is function of r, the ratio of flow
distribution a = Q1/Q and the diffusion parameter d between the
two volumes. The systems of Eqs. (13) and (14) for the serial in
parallel configurations are given in Appendix A. One has the
following result.

Proposition 1. For a given input flow rate Q and volume V, there

exists a threshold Sin > 0 such that the smallest output concentra-

tion s$out is reached for a serial configuration when Sin > Sin, and for

a parallel configuration when Sin < Sin. Moreover, in this last case,

the map d 7!s$outðdÞ admits an unique minimum for a d$<+1
Furthermore, there exists another threshold Sin < Sin such that

d$ = 0 for Sin < Sin and d$ > 0 for Sin 2 ðSin; SinÞ.
These results have been proved in Haidar et al. (2011) for linear

growth functions and later extended to Monod functions in Haidar
(2011). We illustrate these results for a linear growth function with
total volume V and input flow rate Q such that l(Q/V) = 1. For the
single tank configuration, the output concentration at steady state
is thus equal to 1. The threshold Sin can be computed to be equal to
2.

In Fig. 2, the output concentration at steady state s$out has been
plotted for various values of Sin as function of the parameters of the
serial or parallel configurations. On can first see that for any value
of Sin, there always exists a serial or parallel configuration such
that s$out < 1 (that is consequently better than having a single tank).
When Sin is above the threshold Sin ¼ 2, the parallel configurations
have always s$out above 1 and there exist values of r such that the

serial configuration has s$out under 1. For Sin below the threshold,

conclusions are reversed: the serial configuration has s$out always
larger than 1, while there exist parameter values of d such that the
parallel configuration has s$out lower than 1. Moreover, one can see
that for values of Sin under the threshold but no too low, the
smallest value of s$out is obtained for a positive value of the diffusion
parameter d.

3. Biodiversity and spatial patterns

Now we consider the case of two species (or two consumers) of
concentrations x1, x2 in competition for the single limiting resource
in the chemostat. A straightforward extension of the mono-specific
model (1) is given by the system (where the yield parameter Y has

Fig. 1. Consideration of three spatial patterns with same total volume V.
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