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1. Introduction

Current developments in evolutionary biology emphasize the
role of relationships between selection mechanisms and ecological
factors (Schoener, 2011; Morris, 2011; Pelletier et al., 2009). This
perspective is very interesting from the point of view of formal
modelling, which can contribute to this research program not only
by quantitative predictions, but also by rigorous conceptualization
of the analyzed mechanisms. Thus, this direction should also be
considered in the development of modelling approaches such as
evolutionary game theory. Recent developments in this field,
focused on the realistic modelling of the turnover of individuals
(i.e. the dynamics of the replacement of the dying adult individuals
by newly introduced juveniles), can be useful in pursuing this goal.
In this study we will analyze the interplay between selection
dynamics of strategy frequencies and the ecological dynamics
shaping the population size. In addition we will investigate the
relationships between game theoretic equilibrium conditions and
nullclines of the selection and ecological dynamics.

In the classical approach to evolutionary game theory (Maynard
Smith, 1982; Hofbauer and Sigmund, 1988, 1998), a well-mixed
population with clonal reproduction and no mutation evolves under
natural selection. The strategies are heritable phenotypic traits or
different behavioral patterns and payoff functions describing their
fitness. The merits and limitations of such an approach are
discussed in Maynard Smith (1982) (for interesting general work
based upon similar principles but with an infinite strategy set, see
for example Gorban, 2007; Meszena et al., 2006; Oechssler and
Riedel, 2001). An abstract ‘‘fitness’’ is expressed as an infinitesimal
growth rate r and described in undefined ‘‘units’’, which are the
currency in which evolutionary ‘‘costs’’ and ‘‘benefits’’ are counted.
The basic model of the game dynamics of k competing strategies are
replicator dynamics, defined on the k � 1 dimensional simplex.
Table 1 contains the list of important symbols. Then qi = ni/

P
jnj (ni is

the number of carriers of the ith strategy) is the frequency of the ith
strategy and ri(q) is its payoff function:

q̇i ¼ qi riðqÞ�
X

j

rjðqÞ

0
@

1
A for i ¼ 1; . . .; k�1: (1)

In the classical approach to evolutionary game modelling there is
no explicit analysis of the impact of limitations of the population

Ecological Complexity xxx (2017) xxx–xxx

A R T I C L E I N F O

Article history:

Received 7 May 2015

Received in revised form 19 March 2017

Accepted 9 April 2017

Available online xxx

Keywords:

Replicator dynamics

Eco-evolutionary feedbacks

Density dependence

Evolutionary stability

Evolutionary game

A B S T R A C T

This paper further develops a new way of modelling evolutionary game models with an emphasis on

ecological realism, concerned with how ecological factors determine payoffs in evolutionary games. Our

paper is focused on the impact of strategically neutral growth limiting factors and background fitness

components on game dynamics and the form of the stability conditions for the rest points constituted by

the intersections of the frequency and density nullclines. It is shown that for the density dependent case,

that at the stationary state, the turnover coefficients (numbers of newborns per single dead adult) are

equal for all strategies. In addition, the paper contains a derivation of the EESS (eco-evolutionarily stable

states) conditions, describing evolutionary stability under limited population growth. We show that

evolutionary stability depends on the local geometry (slopes) of the intersecting nullclines. The paper

contains examples showing that density dependence induces behaviour which is not compatible with

purely frequency dependent static game theoretic ESS stability conditions. We show that with the

addition of density dependence, stable states can become unstable and unstable states can be stabilised.

The stability or instability of the rest points can be explained by a mechanism of eco-evolutionary

feedback.
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size. In more complex approaches (Cressman, 1992; Cressman
et al., 2001; Cressman and Garay, 2003a,b; Argasinski, 2006)
density dependence has been taken into consideration. The specific
case of selectively neutral density dependence, which means that
the growth suppression acts on all strategies in the same way, was
analyzed in Argasinski and Kozłowski (2008). It was shown there
that the classical approach (1) can be problematic, when growth
limitation, related to the logistic equation, is implemented. The
dynamics stop when the carrying capacity is reached. This is
caused by the fact that both birth and death rates are suppressed,
leading to a population of immortal individuals. This problem can
be solved by using the assumption that only the birth rate is
suppressed by juvenile recruitment survival, which leads to a
generalization of the replicator dynamics completed by the
equation for the population size (Argasinski and Broom, 2012).
In this approach payoffs are described explicitly as demographic
vital rates (mortality and fertility), not as an abstract fitness. Thus
assume that Wi(q) is the fertility function, suppressed by the
density dependent juvenile recruitment function (1 � n/K) (where
n =

P
jnj and K is the carrying capacity describing the maximal

population load, Hui, 2006), and di(q) = 1 � si(q) is the adult
mortality. This leads to the following:

q̇i ¼ qi WiðqÞ�
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where the bracketed term from (1) splits into two brackets
describing differences in fertilities and mortalities. The replicator
system (2) is completed by Eq. (3) describing the changes of the
population size caused by selection of the strategies. A similar
method was applied in a number of papers (Hauert et al., 2006,
2008; Argasinski and Kozłowski, 2008; Zhang and Hui, 2011;
Argasinski and Broom, 2012; Huang et al., 2015; Gokhale and
Hauert, 2016). In this approach population size does not converge
to an arbitrary carrying capacity as in many models (for example
Cressman and Křivan, 2010; Křivan, 2014) but to a dynamic
equilibrium between mortality and fertility (this is often called an
emergent carrying capacity, Bowers et al., 2003; Sieber et al.,
2014). The general selective properties of this approach were
presented in Argasinski and Broom (2013), where the simplified
version of (2) and (3) with payoffs as constants was analyzed. It
was shown there that when the population reaches the close
neighbourhood of the population size equilibrium (nullcline of the
equations for n), then newborns form the pool of candidates from
which individuals replacing the dead adults in their nest sites will
be drawn. This mechanism was termed the ‘‘nest site lottery’’. This
process promotes the strategies that maximize the number of
newborns replacing each single dying adult (termed the ‘‘turnover
coefficient’’), however among strategies maximizing this quantity
it is profitable to maximize the mortality (the number of dead
adults) and thus also the number of newborns replacing them.
Therefore, we have a two stage fitness measure.

The previous paper, Argasinski and Broom (2012), was focused
on the description of the above approach using demographic
parameters, mortality as the probability of death (or equivalently
survival) and fertility as per capita number of offspring. This
allows for a description of the abstract and unclear parameters
such as ‘‘fitness’’ or ‘‘growth rate’’ by clear and measurable
parameters. In addition, the new approach is focused on
the detailed description of the structure of cause-effect chains
underlying the particular interactions. For example, the modelled
interaction described by the game theoretic structure can be
composed of several mortality and fertility stages following each
other. This aspect can be illustrated by the simplest case of a
single pre-reproductive mortality stage preceding the fertility
stage. Then only survivors of the interaction can reproduce,
which should be incorporated into the payoff functions. Thus
the fertility payoffs Wi(q) will be replaced by the mortality–
fertility trade-off function Vi(q) =

P
jqjsi(ej)Wi(ej) (where ej is

the vector describing the jth pure strategy) describing the
reproductive success of the survivors. The new conceptual
framework was applied to the classical Hawk-Dove game to
illustrate the advantages over the classical approach.

The general framework was clarified in a second paper
(Argasinski and Broom, submitted for publication) focused on
the derivation of the game theoretic model from the general
population dynamics model also describing factors other than the
modelled type of interaction. For example individuals playing the
Hawk-Dove game during the mating conflict (the modelled focal
interaction) can also be killed by predators (background interac-
tions without relation to the strategies in the focal game). This
leads to a model of a population of individuals playing different
types of games describing different interactions occurring at
different rates (see Appendix 1 for more details). Thus, by analogy
with chemical kinetics (Upadhyay, 2006), the game theoretic
structure is equivalent to stoichiometric coefficients describing the
outcomes of a single reaction between particles (in our case,
interactions between individuals) and the rate of occurrence is
equivalent to the reaction rate. The new framework focuses on
births and deaths (described by separate payoff functions) as the
aggregated outcomes of the physical interactions between
individuals and the elements of the environment. This is why it

Table 1
Important symbols.

n Population size

qi Frequency of the ith strategy

K Carrying capacity (maximal environmental load)

Wi(q) Fertility payoff of the ith strategy

si(q) Prereproductive survival payoff function of the

ith strategy

Vi =
P

jqjsi(ej)Wi(ej) Mortality–fertility trade-off function (example of

fertility payoff)

t1 Rate of occurrence (intensity) of the game event

t2 Rate of occurrence of the background event

WB Average background event fertility

mB = 1 � bB Average background event mortality

u = t2/t1 Average number of background events between

two focal events

F = uWB Rate of the average background fertility

C = umB Rate of background mortality

g(n, q) Function describing the right hand side of the

frequency equation

f(n, q) Function describing the right hand side of the

population size equation

V1(q) General fertility payoff of the first strategy

related to the focal game

s1(q) General survival payoff of the first strategy

related to the focal game

B1(q) = V1 +F General fertility factor of all events of the first

strategy

M1(q) = 1 � s1 + C General mortality factor of all events of the first

strategy

BðqÞ ¼ q1B1 þ ð1�q1ÞB2 Average fertility factor

MðqÞ ¼ q1M1 þ ð1�q1ÞM2 Average mortality factor

ruðqÞ ¼ BðqÞ�MðqÞ Rate of the unsuppressed growth

S Hawk-Dove example survival payoff matrix

F = WP Hawk-Dove example fertility payoff matrix

d = 1 � s Probability of death during a contest in a

Hawk-Dove game

q̃ðnÞ Frequency nullcline

ñðqÞ Density nullcline
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