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A B S T R A C T

In matrix population models, the process of population “projection” through a number of time steps is
fundamentally multiplicative, hence the arithmetic mean of the consecutive matrices is of doubtful
meaning, while the geometric mean quite corresponds to the multiplication principle. The geometric
mean of positive numbers does not bear any problem, but that of matrices does. The “population
projection matrices” (PPMs) are rather nonnegative than positive, with the allocation of non-zeros that is
predetermined by the life cycle graph (LCG) reflecting the development biology of a given species, and
this graph is principally incomplete. The average matrix A should logically have the same fixed pattern of
zeros as those to be averaged, and this causes the averaging matrix equation to be overdetermined as a
system of element-wise algebraic equations for the unknown positive elements. Therefore, the exact
solution to the problem of pattern-geometric averaging does generally not exist, while the classical (least-
squares) approximation leads to a significant error. My heuristic approach to finding a better approximate
A for the PPMs in the form of L = T(transition) + F(fertility) is to solve the problem in a combined way: the
pattern-geometric approximation for the T part and the exact arithmetic mean for F (as population
recruitment is an additive process). As a result, the approximation error decreases drastically due to
matrix T being always substochastic, while the combined, TF-averaging, method turns out efficient even
under ‘reproductive uncertainty’ in data, i.e., for the whole families of feasible matrices F in the sum
L = T + {F}. I illustrate the method of TF-averaging with 5 matrices L(t) calibrated for each pair of
consecutive years from a 6-year period of observation in a case study of Eritrichium caucasicum, a short-
lived perennial herbaceous species. The approximate TF-average enables gaining the ‘age-specific traits
from stage-specific models’ (Caswell, 2001, p. 116) that are characteristic of the entire period, and I
discuss other motivations/advantages for/of pattern-geometric means in matrix population models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The population projection matrix (PPM) is an n � n nonnegative
matrix L that governs the discrete-time dynamics in a single-
species population structured into n stage-specific groups. The
stage is understood in a generalized sense, as any discrete (or
discretized) characteristic that can be used to classify the status of
individuals in the population (Caswell, 2001), such as age, size, or
stage of ontogeny, etc. The population structure is then represented

by vector x(t) 2 Rn
þ whose components are the (absolute or

relative) numbers of individuals in the corresponding stage-
specific groups at time moment t. These moments are normally
associated with consecutive (e.g., annual) censuses of the
population and with the basic model equation,

x(t + 1) = L(t) x(t), t = 0, 1, 2, . . . ., (1)

where the elements of matrix L(t), or the vital rates (Caswell, 2001),
depend generally on t and may also depend on the population
density or the densities of some status-specific groups.

However, in a growing number of practical applications
(MPIDR, 2017), the PPM represents a linear transformation of
the vector space. When considered as an operator in a vector space,
an n � n matrix A is called a projection matrix if AA = A. The meaning
of this definition is obvious: once projected to a subspace, any
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vector x 2 Rn can no longer be changed by the same operator A, but
this matrix property could hardly be motivated in model (1).
Therefore, the “Projection Matrices” in the title are not quite legal,
though well-established among the matrix models of population
dynamics (Caswell, 1989, 2001), following the idea that the matrix
“projects” the current population structure for one time step
further.

When the knowledge of species biology is expressed as a life
cycle graph (LCG, Caswell, 2001) reflecting the transitions among
structural groups that may occur for one time step and the
population recruitment that may appear for the same period
(Fig. 1), the pattern of matrix L (i.e., the allocation of its positive and
zero elements) is determined by the LCG as the directed graph
associated formally to the matrix (Harary et al., 1965). For example,
the LCG in Fig. 1 generates a so-called Lefkovitch (1965) matrix

L ¼
0 � � � bn�1 bn
s1 r2 0 0
..
.

} } ..
.

0 � � � sn�1 rn

2
6664

3
7775 ð2Þ

with positive survival rates si> 0 (i = 1, 2, . . . , n � 1) on the first
subdiagonal, nonnegative1 stage delay rates rj� 0 (j = 1, 2, . . . , n)
on the principal diagonal, two positive reproduction rates bn�1, bn
> 0 in the first row, and zeroes elsewhere. The actual quantitative
meanings of these rates follow evidently from Eq. (1) explicated for
each vector component (Caswell, 2001, Ch. 4). Other LCGs may
generate matrices with more complicated patterns (see, e.g.,
Logofet, 2008).

When matrix L(t) = L remains constant over time, we obviously
have

x(t) = Lt x(0) 8 t = 0, 1, . . . .

Perron–Frobenius theorem for nonnegative matrices, the
mathematical ground of matrix population models, provides for
the existence of the dominant eigenvalue coincident with the
spectral radius, l1(L) = r(L) > 0, and guaranteeing, in the primitive
case, the convergence

x(t)/l1
t! x* as t ! 1, (3)

where x* is a corresponding positive eigenvector whose length
depends on the initial structure x(0) (Logofet, 1993; Cushing, 1998;
Li and Schneider, 2002; Logofet and Belova, 2008). Thus, l1(L)
represents the asymptotic growth rate of the population, hence, in
applications, i.e., whenever L has been calibrated from data, it
serves as a measure at which the local population is adapted to the
environment, or an efficient measuring tool in comparative
demography (see, e.g., Klimas et al., 2012; Logofet, 2013b, 2016).

In addition, a number of ‘age-specific traits’ can be extracted
‘from stage-specific models’ (Caswell, 2001, p. 116), such as the life

expectancy and the mean age at first reproduction (Caswell, 2001,
Ch. 5), by means of constructing some virtual absorbing Markov
chains that can reach certain age-specific events in the life cycle of
individuals for random times (random numbers of time steps),
while the mean and variance of these random variables are
amenable to calculation by known formulae (Kemeny and Snell,
1960), thus resulting in the estimates desired.

However, these age-specific traits, as well as the adaptation
measure l1(L), can only be relevant to quite a limited interval of
real time, namely, to the period defined by the data used to
calibrate the projection matrix L. This period may often reduce to
just one discrete-time step of the model, e.g., the interval between
two consecutive censuses at time moment t = 0 and at t = 1. The
situation is typical for the type of data called ‘identified individuals’
(Caswell, 2001, p. 134), where the ‘individuals are marked and
followed over time’ (Caswell, 2001, p. 134).

When available is a time series of data for several time steps, it is
logical to seek for the population characteristics that cover all the
period of time. In terms of a matrix population model calibrated on
several time steps, it means that we have a finite set of one-step
matrices, L(t), each obeying Eq. (1) with the known data x(t), t = 0,
1, . . . , M � 1, where M denotes the final moment in the time series
of data. In general terms, we are dealing with a nonautonomous
matrix model and seeking for the population characteristics
averaged over the time series. The nearest way to reveal those
expanded characteristics is to extract them from a matrix A that
represents an average of the calibrated one-step matrices, and the
question is ‘What kind of matrix averaging does correspond to the
idea of time- averaged characteristics?’

Averaging issues get little attention in the literature on matrix
population models, while authors use the arithmetic mean by
default (Logofet, 2013a) since it poses no problems due to the
linearity of matrices as operators in a vector space. In the present
paper, I show, first, that the correct answer to the above question is
geometric mean and, second, that it does typically not exist as an
exact solution to the system of averaging equations for the PPMs of
matrix population models. An approximate solution remediates the
situation, and I illustrate this in Section 3, where a nonautono-
mous matrix model of stage-structured dynamics in a local
population of a short-lived perennial plant species is reported as a
case study. The field data were of the ‘identified individuals with
uncertain parents’ type (Logofet, 2010, p. 33), and the uncertainty
in data complicated the task to average five calibrated annual
projection matrices L(t). Their own l1(L)s were localized
differently with regard to 1, thus depriving the model of the
ability to forecast the population dynamics in terms of asymptotic
increase, steady state, or decline. Averaging has enabled the
forecast to be certain as well as a certain answer to ‘How
specifically short does the short-lived perennial live?’ Finally, I
discuss more motivations to seek for the geometric mean of the
time-specific PPMs.

2. How to average a nonautonomous matrix model

Suppose we have a nonautonomous matrix model for stage-
structured population dynamics in the form of Eq. (1), where
vector x(t) 2 Rn

þ represents the population structure at a discrete
time moment t = 0, 1, . . . If the empirical data are of the ‘identified
individuals with uncertain parents’ type (Logofet, 2010, p. 33), then
the vectors x(t) should be known for a finite number M + 1 � 3 of
consecutive moments t = 0, 1, . . . , M in spite of the ‘uncertain
parents’ (Caswell, 2001, Ch. x6.1.1).

If we have managed to calibrate the matrices L(t) at M those
moments, then it follows from Eq. (1) that

x(M) = L(M � 1) L(M � 2) . . . L(1) L(0) x(0) (4)

Fig. 1. An example of the LCG for a hypothetical stage-structured population with n
stages, of which the (n � 1)-th and the n-th stages are reproductive.

1 Shown is the case where r1 = 0 and all the rest rj> 0.
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