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A B S T R A C T

As a consequence of the complexity of ecosystems and context-dependence of species interactions,
structural uncertainty is pervasive in ecological modeling. This is particularly problematic when
ecological models are used to make conservation and management plans whose outcomes may depend
strongly on model formulation. Nonlinear time series approaches allow us to circumvent this issue by
using the observed dynamics of the system to guide policy development. However, these methods
typically require long time series from stationary systems, which are rarely available in ecological
settings. Here we present a Bayesian approach to nonlinear forecasting based on Gaussian processes that
readily integrates information from several short time series and allows for nonstationary dynamics. We
demonstrate the utility of our modeling methods on simulated from a wide range of ecological scenarios.
We expect that these models will extend the range of ecological systems to which nonlinear forecasting
methods can be usefully applied.

Published by Elsevier B.V.

1. Introduction

Ecosystems involve a large and often unknown number of
organisms and environmental factors. These components interact
within and across species, age groups, genotypes, and environ-
mental factors through time leading to systems that can be
extremely complex. While it is possible to disentangle these
sources of complexity for a handful of experimentally tractable,
well-studied systems, identifying models for less-studied or
intractable systems is a daunting task. Due to the system
complexity, seemingly slight changes in model structure can lead
to qualitatively different predictions (Wood and Thomas, 1999;
Walters et al., 2016). This is particularly relevant when models are
needed to inform conservation and management decisions (Lee
et al., 1999; Wood and Thomas, 1999).

Alternatively, nonparametric time series methods allow us to
study the dynamics of a system without having to specify a model.
These methods originated in the 1980’s and 90’s based on Takens’

(1981) theorem of time-delay embedding. Although initially
restricted to single time series from an autonomous, deterministic
system, these methods have since been generalized to multiple
time series (Deyle and Sugihara, 2011) from non-autonomous
systems with deterministic (Stark, 1999) and stochastic forcing
(Stark et al., 2003). These methods have been of great use in physics
(Buzug and Pfister, 1992), neurobiology (Kannathal et al., 2005),
and econometrics (Mayfield and Mizrach, 1992) where long time
series that are relatively free of observation noise are fairly
common. Although a correctly specified parametric model is able
to extract more information about the system (e.g. estimates of
relevant parameters, reduced uncertainty), the insights gained
from nonparametric methods tend to be robust to model
misspecification.

Ecological applications of nonlinear forecasting were popular in
the 1980’s and 90’s, including outstanding work by Sugihara
(1994), Schaffer (1985), and Ellner and Turchin (1993); see
Hastings et al. (1993) for a review. In the current literature, these
methods seem to have been supplanted by more ‘mechanistic’
state-space models (see Patterson et al., 2008; and references
therein) or linear models with time varying coefficients (e.g. Ives
and Dakos, 2012).
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The primary objections to using time-delay embedding in
ecology seem to be that ecological time series are noisy, too short
to define an attractor, and not stationary (Sugihara et al., 1990;
Grenfell et al., 2001). Modern statistical methods, developed
outside the time-delay embedding literature, may mitigate these
objections. Hierarchical approaches allow information to be shared
across data sets without assuming that they are identical (e.g., Shi
et al., 2005; Bjornstad and Grenfell, 2001; Royle and Dorazio, 2008;
Halstead et al., 2012). Nonstationary dynamics, in which the
system drivers change through time, can be accommodated by
allowing parameters to change as well (West and Harrison, 1997;
Wikle, 2003; Ives and Dakos, 2012).

Here, we develop a Bayesian nonparametric framework
for time-delay embedding that makes use of these modern
statistical ideas. To do so, we use Gaussian process models to infer
dynamics in delay coordinates. The chief advantages of the
Gaussian process (GP) are its simple parameterization and ability
to estimate with precision complicated nonlinear functions
(O’Hagan, 1978).
We then extend the GP framework to incorporate hierarchical
inference from multiple time series and allow for nonstarionarity.

2. Methods and results

To begin, we briefly describe time delay embedding. We then
introduce Gaussian processes as a tool for time-delay embedding
and present a model specification that allows us to identify the
relevant lags in the series. We extend this model to a hierarchical
form that accommodates information from multiple related times
series. Finally, we demonstrate how nonstationarity can be
incorporated into the Gaussian process time-delay embedding
model. These methods are then applied to a sequence of simulated
data sets.

There is now a long history of applying Takens’ theorem and
time delay embedding in the ecological literature, see, e.g., Schaffer
(1985), Ellner and Turchin (1993), and Sugihara (1994). However,
most of the descriptions of the idea are steeped in the alien
vernacular of topology. While there are deeper insights to be
gained from the topological viewpoint, the practical upshot of
Takens’ theorem is that we are justified in modeling the dynamics
of a single time series yt(t = 1, . . . ,T) as a function of its lags. That is,
yt = f(yt-1, . . . yt-L) for some unknown function f and ‘embedding
dimension’ L which is at least twice the dimension of the attractor
(Takens, 1981). Here, a fixed time step of 1 is assumed in keeping
with the majority of ecological time series applications. In settings
where the data are continuously sampled through time, an
appropriate time lag, D, must also be determined and the model
is yt = f(yt-D, . . . yt-LD).

Various approaches to nonlinear forecasting can be thought of
as approximating the unknown function f, including polynomials
(e.g. Turchin and Ellner, 1995), support vector machines (e.g.
Mukherjee et al., 1997), and neural networks (e.g. Bakker et al.,
2000). A particularly useful way to approximate f is using locally-
weighted multiple linear regression, as in Sugihara’s S-Map
(Sugihara 1994). Specifically, a locally linear model of the form

yt ¼
XL

i¼1
bt;iyt�i þ et is fit to the time series by weighted least

squares. We have highlighted this method in particular because it
was precisely locally linear models that motivated O’Hagan (1978)
to introduce Gaussian processes (GP) as priors for flexible
regression modeling from a Bayesian point of view. Here, we
use the tools of Bayesian GP regression to construct a hierarchical
approach to nonlinear forecasting that allows integration of
information from multiple time series and explicitly deals with
nonstationarity. The main text lays out the model specification and
the simulations used to test each model. Further details of prior

specification and posterior inference are provided in the Appendi-
ces.

2.1. Gaussian process time-delay embedding

Assume we have a scalar time series y1; . . . ; yT , and the goal is to
estimate the unknown function f that maps the history of y into the
future. To simplify notation, we’ll use xt ¼ fyt�1; . . . ; yt�Lg to
represent the ‘delay-coordinate vector’ so that we are attempting
to fit a model of the form yt ¼ f ðxtÞ þ et for t 2 fL þ 1; . . . ; Tg. The
errors et are explicitly included here to account for approximation
errors as well as process noise. For convenience, we assume that et
is (at least approximately) normally distributed with mean 0 and
variance Ve.

The shape of the function f is unknown and we would like to
estimate it from the available data. In a Bayesian context, we do so
by assigning a prior to f and updating the distribution over f given
the observed data. Since we are inferring a function, we need a
prior on a space of functions and the natural place to look for these
is the theory of stochastic process. The Gaussian process is
particularly convenient to work with as a prior for uncertain
regression functions (O’Hagan, 1978). GP models have been used
widely in spatial statistics under the moniker Kriging (Cressie,
1993). In addition, they have been used in population modeling to
estimate the form of density dependence (Munch et al., 2005), test
for the presence of Allee effects (Sugeno and Munch, 2013), and as
a tool to assess model misspecification (Thorson et al., 2014).
Rasmussen and Williams (2006) is an excellent source for
additional background on modeling with Gaussian processes.

The GP is a continuous generalization of the multivariate
normal distribution and as such is completely defined in terms of a
mean and covariance. However, because it is a distribution on a
function space, the mean and covariance are functions as well,
denoted by mðwÞ and Sðw; w0Þ, respectively. Here w and w’ denote
two arbitrary ‘inputs’. At a single input, the marginal distribution
for f ðwÞ is Gaussian with mean mðwÞ and variance Sðw; wÞ. For any

finite collection of input points, w ¼ fw1; . . . ; wngT (superscript T
denotes transpose), the marginal distribution is multivariate

normal with mean vector mðwÞ ¼ fmðw1Þ; . . . ; mðwnÞgT and co-
variance matrix Sðw; wTÞ {i.e. the covariance matrix is constructed
by evaluating the covariance function at all pairs of inputs, such

that the i; jth element is Sðwi; wjÞ}.
In the present application we set the mean function to zero,

m ¼ 0, to indicate that we do not have any a priori information on
the shape of the function we want to infer. This is particularly the
case for time-delay embedding where the ‘true’ function is bound
to be something rather complicated. In other applications, such as
modeling density dependence or population productivity, we can
use standard parametric models as the prior mean and use the GP
to infer model misspecification (see e.g. Thorson et al., 2014;
Sugeno and Munch 2013).

Setting the mean function to zero means that the covariance
function informs the shape of f by specifying how strongly
correlated realizations of f are at different inputs. In general, the
slower the correlation decays with increasing separation between
inputs, the smoother realizations of f will be. There are many
choices for the covariance function (see e.g. Rasmussen and
Williams, 2006; Paciorek and Schervish, 2004). The squared

exponential correlation function, RðdÞ ¼ exp½�d2� where
d ¼ w � w0, is among the most widely used.

In the present application the ‘inputs’ are the delay coordinate
vectors, xt ¼ fyt�1; . . . ; yt�L} and we need to specify the covariance
between f evaluated at the delay coordinates for two different
times, e.g. f ðxtÞ and f ðxsÞ for times t and s, respectively. We build
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