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1. Introduction

When Alan Turing was cracking intercepted coded messages
from the Nazis during World War II (Copeland, 2004), he probably
could not imagine that his computational breakthoughs could be
used for identifying changes in patterns of ecological data. Turing
was trying to recognize regularities in the coded messages of Nazi
Germans and come up with a ‘‘program’’ that would back-
transform the messages to their decoded content. This ‘‘program’’
is similar to what Turing developed after the war into what is called
a Turing machine. Turing machines are abstract computational

devices that can execute simple rules that represent a program.
Once applied to some data (like the coded messages of Nazi
Germans), Turing machines will reveal their real (computed)
content. Indeed, the idea that there exists a program that can
produce an observed pattern is powerful and is central in the
science of algorithms and computational problems (Kolmogorov,
1965).

In a somewhat similar way, ecologists have been attempting to
link pattern (the ‘‘data’’) to process (the ‘‘program’’) when studying
ecological systems. A classical example is distinguishing stochas-
ticity from deterministic chaos in population dynamics. Are the
patterns in the dynamics of fish stock populations a stochastic
trajectory around an equilibrium state, or do the patterns hold the
signature of a well-defined chaotic attractor that looks random but
in fact it is completely deterministic? Are the boom and bust
dynamics of sardine and anchovies populations off the coast of
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A B S T R A C T

Despite advances in our mechanistic understanding of ecological processes, the inherent complexity of

real-world ecosystems still limits our ability in predicting ecological dynamics especially in the face of

on-going environmental stress. Developing a model is frequently challenged by structure uncertainty,

unknown parameters, and limited data for exploring out-of-sample predictions. One way to address this

challenge is to look for patterns in the data themselves in order to infer the underlying processes of an

ecological system rather than to build system-specific models. For example, it has been recently

suggested that statistical changes in ecological dynamics can be used to infer changes in the stability of

ecosystems as they approach tipping points. For computer scientists such inference is similar to the

notion of a Turing machine: a computational device that could execute a program (the process) to

produce the observed data (the pattern). Here, we make use of such basic computational ideas

introduced by Alan Turing to recognize changing patterns in ecological dynamics in ecosystems under

stress. To do this, we use the concept of Kolmogorov algorithmic complexity that is a measure of

randomness. In particular, we estimate an approximation to Kolmogorov complexity based on the Block

Decomposition Method (BDM). We apply BDM to identify changes in complexity in simulated time-

series and spatial datasets from ecosystems that experience different types of ecological transitions. We

find that in all cases, KBDM complexity decreased before all ecological transitions both in time-series and

spatial datasets. These trends indicate that loss of stability in the ecological models we explored is

characterized by loss of complexity and the emergence of a regular and computable underlying

structure. Our results suggest that Kolmogorov complexity may serve as tool for revealing changes in the

dynamics of ecosystems close to ecological transitions.
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Chile (Lluch-Belda et al., 1989) driven by external environmental
forces or by inherent feedbacks between populations and their
competitors? Of course, such divides are oversimplifications.
Ecologists have considerably improved their understanding in
explaining such observed patterns by recognizing that it is a mix of
dynamical processes and environmental stochasticity that shapes
the trajectories of populations and ecological systems in general.
However, our mechanistic understanding is still incomplete
(Beckage et al., 2011), uncertainty in the parameters or in the
functional relationships used in the models we develop remains
high (Evans et al., 2013), and our ability in predicting ecological
dynamics in the face of environmental stress is limited (Schindler
and Hilborn, 2015).

Still, there is an increasing need in developing a more predictive
ecological science that moves from explanatory to anticipatory
predictions (Mouquet et al., 2015). This perspective appears to be
facilitated by a rise in the availability and collection of data (Evans
et al., 2013), together with the development of algorithmic models
that introduce a machine learning approach contrary to traditional
statistical modeling (Breiman, 2001). Such an approach, for
instance, would look for patterns in the data themselves in order
to identify changes in the underlying processes of an ecosystem.
Nonetheless, despite the daunting task of building predictive
mechanistic models, new model building and model selection
techniques have been developed to reduce model uncertainty and
optimize parameter selection (like, for example, by using regres-
sion trees in model analyses (Eynaud et al., 2013)). Clearly, a
combination of approaches is probably the best strategy depend-
ing on the specifics of the ecological system in question.

One such approach studies how statistical changes in ecological
dynamics can be used to infer changes in the stability of
ecosystems under stress (Scheffer et al., 2015). These changes
reflect loss of stability when environmental conditions push
ecosystems across local bifurcation points. Bifurcation points are
thresholds where the dynamics of a system change dramatically
(Kuznetsov, 1995). Typical local bifurcations in ecological models
are the transition to population extinction through a transcritical
bifurcation (Lotka, 1925), the onset of oscillations in predator–prey
models through a Hopf-bifurcation (Rosenzweig and Macarthur,
1963), or the abrupt shift to resource overexploitation through a
fold bifurcation (Noy-Meir, 1975). This latter case of sudden
discontinuous shifts towards new states is also termed a tipping
point (Lenton et al., 2007). Strikingly, prior to all these local
bifurcations, ecosystem dynamics become slow in responding to
disturbances (Wissel, 1984; Strogatz, 1994). This slowing down
effect leads to a decrease in recovery rate (van Nes and Scheffer,
2007), an increase in variance (Carpenter and Brock, 2006), and a
rise in autocorrelation (Held and Kleinen, 2004). These statistical
changes can be found across different systems (Scheffer et al.,
2012), and they can be detected both in time-series (Dakos et al.,
2012a) and in spatial data (Kéfi et al., 2014). Nonetheless, their
operationalization for anticipating the risk of tipping points is still
challenging (Dakos et al., 2015; Scheffer et al., 2015), as there are
limitations in their performance. The predictability of tipping
points is statistically challenging (Zhang et al., 2015), as these
indicators are highly sensitive to, among others, the presence of
noise, the size of the available data, the type of model used, or the
type of ecological dynamics (e.g. Perretti and Munch, 2012; Dakos
et al., 2012b; Boettiger and Hastings, 2012; Hastings and Wysham,
2010; Zhang et al., 2015).

Thus, other approaches have also been proposed for identifying
changes in ecosystem dynamics in the vicinity to tipping points.
Some are inspired from network theory. Constructing interaction
networks based on cross-correlations between spatially monitored
time-series (Viebahn and Dijkstra, 2014) – like vegetation
dynamics at different locations in the landscape – can be used

to explore how network metrics (e.g. assortativity, clustering, or
degree distributions) change when ecosystems approach a
transition to desertification (Tirabassi et al., 2014). Similar network
properties have been recently used to detect the loss of
cooperation in evolving model communities (Cavaliere et al.,
2016). One can also quantify changes in the statistical properties of
recurrence networks (Marwan et al., 2009) that are derived by
reconstructing the geometry of the attractor of a dynamical system
using recurrence plots (Eckmann et al., 2007). Alternatively,
visibility graphs can transform a time-series into a network (Lacasa
et al., 2008) whose properties can again be used to distinguish
different dynamical systems (Elsner et al., 2009). Other approaches
are based on information theory. Mayer et al. (2006) showed how
the level of disorder in a system measured by Fisher Information
can be associated with different dynamical states in an ecosystem.

Here, we use the basic computational idea introduced by Alan
Turing to test whether changing patterns in ecosystem dynamics
are related to changes in ecosystem stability and ecological
transitions. To do this, we use the concept of Kolmogorov
complexity that is a measure of randomness (Kolmogorov,
1965). We estimate an approximation to Kolmogorov complexity
in time-series and spatial datasets along gradually changing
environmental conditions that lead to ecological transitions across
different dynamical attractors.

The approximation to Kolmogorov complexity that we use in
this paper is suitable for small size data and it has been applied to
several fields (Soler-Toscano et al., 2014), but not yet to ecology.
For example, this approximation to Kolmogorov complexity was
used to investigate biases related to the human conception of
randomness; for example the cognitive ability to generate pseudo-
random sequences of events. Gauvrit et al. (2013) found a slight
progression of Kolmogorov complexity with age in children who
were asked to imagine a random sequence of 8 coin tosses,
showing that algorithmic complexity approximates our subjective
notion of randomness. Moreover, Kolmogorov complexity has
been used to characterize the state of consciousness in brain-
damaged individuals (Casali et al., 2013), brain activity patterns in
response to different stimuli (Boly et al., 2015), or even the
structure of natural and social networks (Zenil et al., 2014).

The paper is structured as follows. In Section 2, we introduce
the notion of Turing machines, define Kolmogorov complexity, and
explain how we approximate Kolmogorov complexity using the
Block Decomposition Method (BDM). Section 3 describes the
simulated time-series and spatial ecological data we used as case
studies, whereas Section 4 summarizes how we analyzed the data
to compute Kolmogorov complexity. We present our results in
Section 5, and discuss them in Section 6.

2. Quantifying complexity: Turing machines, Kolmogorov
complexity, and the Block Decomposition Method (BDM)

2.1. Turing machines

Turing machines are abstract computational devices, capable of
executing simple rules that form a program. They were introduced
by Turing (1937) as a mechanism to investigate formal properties
of computational problems. Universal Turing machines are central
in Algorithmic Information Theory (Solomonoff, 1964a,b; Kolmo-
gorov, 1965; Chaitin, 1975). A universal Turing machine M is a
programmable device (like electronic computers) that can solve
every computable problem provided that an appropriate program
is given as input together with the data the program is applied to.

Turing machines have a head (processor) and a tape (memory)
divided in discrete cells. The head can read and write symbols.
There is a finite number of states in which the head can be. These
states are different for each machine. At each computational step,
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