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A B S T R A C T

Taylor’s power law (TPL) can be applied to the mean-variance relationship for various quantities, e.g.,
population densities over space and time, biomass of plants in the growth processes, developmental rates
and growth rates of arthropods at different temperatures, etc. When TPL holds in the grouped data (e.g.,
the biomass of plants at different investigation times with limited replicates at each investigation), we
must consider the heterocedasticity when carrying out the parameter estimation for a given
mathematical model. We propose two new target functions based on TPL and attempt to more
accurately estimate the model parameter(s). By capturing the mean-variance relationship, the accuracy
of parameter estimation and the power of hypothesis testing are improved compared to the traditional
methods which assume homogeneous variance. Five approaches, including ordinary least squares (OLS),
chi-squared (x2), weighted least squares (WLS), psi-squared (c2) and maximum likelihood estimation
(MLE), are compared under both linear and nonlinear scenarios regarding the prediction accuracy using
both computer simulations and experimental data. We further simulate irregular measurements on the
predictors to examine the robustness of parameter estimation. In computer simulations, psi-squared,
WLS, and MLE outperform OLS and chi-squared with respect to parameter estimation. In the simulation
study of irregular measurements, psi-squared and MLE outperform WLS when the sample mean is
smaller than the population mean. On the other hand, WLS outperforms psi-squared and MLE when the
sample mean is larger than the population mean. Psi-squared has an advantage over MLE when large
irregular deviations are present. This study strongly suggests using psi-squared and WLS in place of OLS
or chi-squared for both linear and nonlinear regressions, the choice of method depending on the
observations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Taylor (1961) studied the mean (M) and variance (V) of spatial
densities of insects and found an empirical formula V = aMb with
constant parameters a and b, which has been referred to in the
scientific literature as Taylor’s power law (TPL). It is essentially a
typical power law, and similar relationships were discovered

independently (e.g., Thompson, 1917; Newman, 2005; Imre and
Novotný, 2016; Cohen et al., 2016), some of them even before
Taylor’s work (e.g., Smith, 1938). Anderson et al. (1982) further
confirmed that TPL holds in describing the temporal dynamics of
population densities. Great attention has been paid to estimate the
exponent (b) in TPL, which usually ranges from 1 to 2 for various
population densities (Anderson et al., 1982; Sawyer, 1989;
Kilpatrick and Ives, 2003; Ballantyne, 2005; Ballantyne and
Kerkhoff, 2007; Eisler et al., 2008; Cohen et al., 2016; Cohen and
Xu, 2015; Giometto et al., 2015; Shi et al., 2016, 2017). Besides the
population densities dynamics, TPL is also applicable to the mean-
variance relationship of crop biomasses at different time points
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during the growth process (Shi et al., 2017) as well as bamboo
biomasses at different internodes (Cheng et al., 2017). In fact, TPL
has found application in many abiotic areas (Eisler et al., 2008;
Fronczak and Fronczak, 2010; Xiao et al., 2015) and is considered as
a universal statistical law as a consequence of the random
sampling of skewed distributions (Cohen and Xu, 2015).

When carrying out a nonlinear regression (e.g., fitting the three-
parameter logistic model; see Ratkowsky, 1983, 1990), it is
customary to assume that the variances of the response variable
at different predictors’ levels are homogeneous, so that the
variance of the response variable is assumed to be constant
regardless of whether the predictors are large or small (Bates and
Watts, 1988). On the other hand, TPL states that the variance is a
function of the mean, so that the larger the x value is, the larger will
be the variance of y (Cohen and Xu, 2015). In experimental
population ecology, we frequently use nonlinear regression to
describe the complex relationships between the response variable
and one or more independent variable(s). Since TPL holds widely in
ecology (i.e., ecological data are often heteroscedastic), we need to
examine whether the heteroscedasticity can largely affect param-
eter estimation in a nonlinear regression when the traditional
method of ordinary least squares is used (Bates and Watts, 1988;
Ratkowsky, 1983).

In the present study, we propose a new method based on TPL for
parameter estimation and compare it with four traditional
methods to check which models are better than the remaining
candidates in reducing the prediction errors of model parameters.
Three nonlinear models with known parameters are used to
simulate the data for comparing the results of parameter
estimations using five methods.

2. Materials and methods

2.1. Five methods for parameter estimation

Assume q groups of observations with each group representing
a different level of x. For example, considering the dry weight of
plants at q investigation times during the growth season, ni (i = 1, 2,

3, . . . , q) plants are weighed at each time for a total of n ¼
Xq

i
ni

plants. A linear or nonlinear growth function f(x; u) can be
formulated, where u ¼ u1; u2; u3; . . . ; up

� �
represents p param-

eters of the growth function (e.g., in a simple linear regression
y = a + bx, p = 2). Let mi ¼ f xi; uð Þ, where xi represents the predictor
observations in the i-th group. Here we consider five methods to
estimate u.

(i) Ordinary least squares (OLS)

û ¼ argmin
u

Xq

i¼1
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j¼1
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where yij represents the dry weight of the j-th plant (j = 1, 2, 3, . . . ,
ni) in the i-th group.

(ii) Chi-squared (x2)
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where b is the exponent of TPL that can be estimated in practice by
the linear regression between ln(mean) and ln(variance) of yij. See
Appendix A1 in Supplementary data for the derivation of Eq. (3).

(iv) Weighted least squares (WLS)

u ¼ argmin
u

Xq

i¼1
½wi :

Xni
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where wi ¼ 1Pni
j¼1

ðyij�y iÞ2
ni�1

, and yi represents the mean of the i-th

group of response variables. In fact, chi-squared can be regarded as
a special case of WLS. Here we use the most commonly adopted
WLS with weights equal to the reciprocal of the group-wise
variances.

(v) Maximum likelihood estimation (MLE) with TPL

û ¼ argmax
u
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where L represents the likelihood. See Appendix A1 in Supple-
mentary data for the derivation of Eq. (5).

2.2. Examples of parameter estimation

To evaluate the accuracies of the parameter estimates obtained
using the five methods, three mathematical models, i.e., f(x; u),
were implemented (Fig. S1-S3). These models were used because
the TPL in the grouped data sets had been found to hold. However,
it does not mean that the above five methods in Section 2.1 for
parameter estimation only apply to the following three models. If
TPL holds in other grouped data sets that use other ecological
models, the five methods can also be employed to implement
parameter estimation. The three models used here have been
reported in the relevant references (see below for details).

(i) The temperature effect on the developmental rates of insects
in the mid-temperature range has been formulated by using the
simple linear model

rd ¼ a þ bT ð6Þ
where rd is the developmental rate (response variable) and T is the
temperature (independent variable) (Uvarov, 1931; Campbell et al.,
1974); a and b are parameters to be estimated.

(ii) The temperature effect on the growth rates of poikilotherms
in the whole thermal range has been formulated by using right-
skewed bell-shaped curves (Sharpe and DeMichele, 1977; Ratkow-
sky et al., 2005; Deutsch et al., 2008; Ratkowsky and Reddy, 2017).
The Lobry–Rosso–Flandrois (LRF) model,

rg ¼ ropt T � Tmaxð ÞT � TminÞ2
Topt � Tmin
� �

Topt � Tmin
� �
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� �� Topt � Tmax
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