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1. Introduction

Prey–predation interactions have been a central theme for
ecological studies in the past few decades (Volterra, 1926; Arditi
and Ginzburg, 1989; Berryman, 1992; Kuang and Beretta, 1998;
Abrams and Ginzburg, 2000; Hsu et al., 2001; Kang and Wedekin,
2013). To study the interaction between predators and their prey, it
is important to determine the specific form of the functional
response between prey and predator that describes the amount of
prey consumed per predator per unit of time since it affects the
population dynamics dramatically (Akcakaya et al., 1995). In
literature, The Holling-Type II functional response (i.e., prey
density dependence) has been considered as a biological mean-
ingful functional response (Li and Kuang, 2007). Some researchers
have argued that a functional response depending on the ratio of
prey to predator abundance is a suitable representation of some
phenomena (Arditi and Ginzburg, 1989). For example, when
predators have to search for food (and therefore have to share or
compete for food), a more suitable general predator–prey theory

such as the ratio-dependent theory (i.e., the per capita predator
growth rate of the predator depends on a function of the ratio of
prey to predator abundance), should be considered. The work by
Akcakaya et al. (1995) and Hsu et al. (2001) supports that the ratio-
dependent predation models (also called the prey–predator
models with Michaelis–Menten type functional responses) are
capable of producing richer and more reasonable dynamics
biologically. Among all predator–prey models, the predation
systems with the Michaelis–Menten type functional responses
have gained a great interest over many decades (a partial list of
references may be found in Kuang and Beretta (1998), Hsu et al.
(2001), Xu and Chaplain (2002), Wang et al. (2007), Meng et al.
(2010), Rao and Wang (2012), Rao (2014) and the references cited
therein). However, many of these studies have concentrated on the
existence, uniqueness and the stability analysis of predation
systems. In addition to the functional response between prey and
predator, there are many other factors such as Allee effects,
dispersal movements of both prey and predator, contributing
greatly to the population dynamics of prey and predator. In this
paper, we propose a reaction–diffusion predator–prey model with
Allee effects in prey and diffusion in both prey and predator to
investigate how the synergy of Allee effects and diffusion affect the
spatial temporal dynamics. More specifically, we focus on the rich
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A B S T R A C T

This paper investigates complex dynamics of a predator–prey interaction model that incorporates: (a) an

Allee effect in prey; (b) the Michaelis–Menten type functional response between prey and predator; and

(c) diffusion in both prey and predator. We provide rigorous mathematical results of the proposed model

including: (1) the stability of non-negative constant steady states; (2) sufficient conditions that lead to

Hopf/Turing bifurcations; (3) a prior estimates of positive steady states; (4) the non-existence and

existence of non-constant positive steady states when the model is under zero-flux boundary condition.

We also perform completed analysis of the corresponding ODE model to obtain a better understanding

on effects of diffusion on the stability. Our analytical results show that the small values of the ratio of the

prey’s diffusion rate to the predator’s diffusion rate are more likely to destabilize the system, thus

generate Hopf-bifurcation and Turing instability that can lead to different spatial patterns. Through

numerical simulations, we observe that our model, with or without Allee effect, can exhibit extremely

rich pattern formations that include but not limit to strips, spotted patterns, symmetric patterns. In

addition, the strength of Allee effects also plays an important role in generating distinct spatial patterns.
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spatial-temporal dynamics of a Michaelis–Menten type prey–
predator model that is distinct from others by incorporating (1) an
Allee effect in prey (which can be weak or strong); and (2) diffusion
in both prey and predator.

In population dynamics, Allee effect refers to the positive
correlation between the population density and the per capita
growth rate (Stephens et al., 1999), which is introduced by Allee
(1978). The Allee effect can be caused by a number of sources such
as difficulties in finding mates at small densities, reproductive
facilitation, predation, environmental conditioning and inbreeding
depressions. Allee effect can be classified into strong and weak
cases. The strong one introduces a population threshold, and the
population must surpass this threshold to grow. In contrast, a
population with a weak Allee effect does not have such threshold.
Detailed investigations relating to the Allee effect can be found in
the papers (Petrovskii et al., 2002; Kent et al., 2003; Zhou et al.,
2005; Shi and Shivaji, 2006; Morozov et al., 2006; Çelik and Duman,
2009; Wang et al., 2011; Kang and Yakubu, 2011; Kang and
Castillo-Chavez, 2014).

Allee effect can have a huge impact on the population dynamics
(Cai et al., 2014). For example, Petrovskii et al. (2002) showed that a
fully deterministic predator–prey model with the Allee effects in
prey can predict a patchy invasion under certain the parameter
range and the model has interesting dynamical features such as the
coexistence state is unstable but no stable limit cycle exists. In Kent
et al. (2003), Kent et al. concluded that the predator–prey system
can be stabilized by an influx of prey due to a rescue effect, and be
destabilized by an outflux of an Allee effect. Zhou et al. (2005)
selected two classical predator–prey systems with the Allee effects
in both predator and prey populations. They showed that the Allee
effect may be a destabilizing force in these predator–prey systems.
Çelik and Duman (2009) investigated the impact of the Allee effect
(on prey population) on the stability of the positive equilibrium
point for a discrete-time predator–prey system. Wang et al. (2011)
considered the dynamic of a reaction–diffusion Holling type II
predator–prey system with strong Allee effect in the prey
population. They showed that the impact of the Allee effect
increases the system spatiotemporal complexity. The Allee effect
was shown to bring essential changes to the population dynamics
and it has drawn considerable attention in almost every aspect of
ecology and conservation, however, there is no work that has been
done for the spatio-temporal dynamics of Michaelis–Menten type
predator–prey model with an Allee effect in prey. One of our main
motivations is to study the synergistic effects of Allee effects in
prey and diffusion in both species on the prey–predator population
dynamics.

Understanding the spatial patterns and the related mechanisms
of interacting species has been a great interest in conservation
biology and ecology. Theoretically, there are a fair amount work by
using two nonlinear reaction–diffusion equations in two spatial
dimensions to study the invasion dynamics of predator–prey
systems (Lewis and Kareiva, 1993; Morozov et al., 2006; Wang
et al., 2011). To understand the role of random mobility of the
individuals or organisms on the stability and persistence of
interacting species, the diffusive predator–prey models have been
studied by many authors (Lin et al., 1988; Murray, 1990; Lou and
Ni, 1996; Pang and Wang, 2003; Cantrell and Cosner, 2003;
Baurmann et al., 2007; Banerjee and Banerjee, 2012) either
qualitatively or numerically. In Lou and Ni (1996), Lou and Ni dealt
with a strongly-coupled parabolic prey–predator system. They
investigated the effects of diffusion, self-diffusion and cross-
diffusion on the dynamics of the system. Baurmann et al. (2007)
studied a generalized predator–prey system on a spatial domain
where diffusion is considered as the principal process of motion.
Banerjee and Banerjee (2012) considered a modified spatiotem-
poral ecological system originating from the Holling-Tanner model

by incorporating diffusion terms with both numerical and
analytical approaches.

The diffusion has been observed as causes of the spontaneous
emergences of ordered structures, called patterns, in a variety of
nonequilibrium situations (Wen, 2013). Patterns generated in
homogeneous environments are particularly interesting because
they require an explanation based on the individual behavior of
organisms, and they emerge from interactions in spatial scales that
are much larger than the characteristic scale of individuals (Alonso
et al., 2002). In mathematics, pattern formation refers to the
process that, by changing a bifurcation parameter, the spatially
homogeneous steady states lose stability to spatially inhomoge-
neous perturbations, and stable inhomogeneous solutions arise
(Wang and Hillen, 2007). In recent years, many researchers show
that the reaction–diffusion predator–prey model is an appropriate
tool for investigating the fundamental mechanism of complex
spatiotemporal predation dynamics (see Alonso et al., 2002;
Baurmann et al., 2007; Wang et al., 2007; Banerjee and Petrovskii,
2011; Rodrigues et al., 2011 and the references therein). There is a
limited work on a reaction–diffusion model with the Michaelis–
Menten type functional response incorporating an Allee effect in
prey population. In this work, we study a Michaelis–Menten type
predator–prey interaction model where random movements of
both species are described by the diffusion terms and prey has
Allee effects ranging from weak to strong. Our model uses the
traditional framework of reaction–diffusion equations where the
reaction part follows the Michaelis–Menten type interaction
between prey and predator population. We assume that both
prey and predator are capable to diffuse over a two dimensional
landscape. We aim to answer the following questions through our
analytic and numerical results:

1. What are the synergistic effects of diffusion and Allee effects on
the spatiotemporal dynamics of our model?

2. Can our proposed model generate distinct spatial patterns? And
what are the mechanisms generating these different patterns?

The organization of this paper is as follows. In Section 2, we
derive a reaction–diffusion Michaelis–Menten type predator–prey
model with an Allee effect in prey. In Section 3, we carry out the
analysis of the basic dynamics of the model, and prove a prior
estimate for positive steady states of the model. In Section 4, we
analyze the stability of non-negative constant steady states, and
provide sufficient conditions that guarantee the existence of Hopf/
Turing bifurcation at positive constant steady states. For the
comparison, we also provide the completed analysis for the
corresponding ODE model. In Section 5, we provide sufficient
conditions that can lead to the non-existence and existence of non-
constant positive steady states. In Section 6, we use numerical
simulations to reveal the emergence of different patterns and the
influences of diffusion and Allee effects on the dynamical behavior
of the model. We conclude our work in Section 7 and the detailed
proofs of our theoretical work are given in the last section.

2. Model derivation

The two-dimensional Michaelis–Menten type prey–predator
interaction model can be described as follows:

dN

dT
¼ FðNÞ�A

NP

N þ P
;

dP

dT
¼ mA

NP

N þ P
�MP;

8><
>: (1)

where N(T) and P(T) are the population densities of prey and
predator at time T � 0, respectively; A is the predation rate, m is the
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