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A B S T R A C T

Because they are intuitive and mathematically straight-forward, colonization rules are often used to
model spatial patterns in ecology. Colonization rules assign individuals to categories according to the
locations of previous colonists. In this note, a compact introduction to colonization rules in ecology is
presented with implications for autocorrelation and spatial distributions. I use the colonization rule
approach to unify a diverse set of spatial and species diversity analyses, exploring future extensions to
incorporate greater realism.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Compact models of species abundances, such as Coleman’s
(1981) random placement model or Hubbell’s (2001) neutral
theory, provide important benchmarks in ecology. Many theoreti-
cal models exist to describe plant and animal communities
(Brännström et al., 2012), where important “colonization rules”
describe how plant or animals distribute over categories. Rules
assign individuals to categories according to assignment probabil-
ities which depend on the locations of previous colonists. Once the
colonization rule is stated, its implications are often easily worked
out using mathematics and simulation. Through examples from
the literature, I suggest that colonization rules provide a very
helpful way of investigating ecological issues. The approach unifies
a broad set of existing models and suggests new models.

2. Random placement models

Consider a species distributing over a uniform spatial grid. Let
the cells be indexed k = 1, 2, . . . , K; and let n1, n2, . . . , nK denote
the numbers of individuals in the cells. A simple colonization rule
is

(1)

where the probabilities ak are constant parameters summing to
one. Rule (1) is applied, one individual at a time (although Hubbell,
2001), describes accommodating multiple individuals at once,
until some given total number J of individuals have been spatially
allocated. J might be the overall carrying capacity of the area
(where Etienne et al., 2007 describes accommodating changing
carrying capacities through time). Differences in ak might
represent cross-cell differences in habitat quality, such as rainfall,
quality of soil, abundance of prey, and so on. In that case, the
allocation probabilities ak may be viewed, for example, as relative
habitability measures. Under rule (1), the cell abundances n1, n2,
. . . , nK will have a multinomial distribution. The marginal
distribution for a particular nk will be binomial with mean akJ.
As J is made larger, the marginal distributions tend toward a
normal bell shape. The special case when the allocation
probabilities are equal (ak= 1/K) is the classic random placement
model of Coleman (1981); then the histogram of the abundance
vector n1, n2, . . . , nK will also tend toward a normal bell shape.

However, empirical studies of spatial grids (e.g., Krebs 1989;
Plotkin et al., 2000; He and Gaston 2000; Holt et al., 2002) find that
histograms of n1, n2, . . . , nK are typically shaped more like a
negative binomial distribution than a normal distribution. To bring
rule (1) into agreement with such findings, it may be generalized
to:

(2)

Here b is a nonnegative parameter, and the ak are again assumed
nonnegative with sum equal to one. The denominator on the rightE-mail address: erin.conlisk@gmail.com (E. Conlisk).
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of (2) merely assures that the allocation probabilities sum to one.
Hence attention focuses on the numerator. The change between
rule (1) and rule (2) is the added term bnk, where b can be thought
of as a parameter describing density-dependent facilitation (such
as an Allee effect).

Rule (2) allows a particular cell k to attract colonists in two
ways. The first is the exogenous attractive force of the cell’s given
ak. The second is the endogenous attractive force of bnk, through
which a cell with greater success early in colonization will tend to
have greater success later in colonization also. This second,
endogenous mechanism can generate a “clustered” or “aggregat-
ed” pattern even if the ak are all set equal to 1/K. The force of the bnk
terms might be viewed as a reproductive effect; more parents
within a cell might generate more offspring within the cell. For rule
(2), as for rule (1), colonization continues until the given total
abundance J is reached. Rule (1) is, of course, the b = 0 special case
of rule (2).

Rule (2) implies a multivariate Polya-Eggenberger distribution
for n1, n2, . . . , nK (e.g., see Zillio and He, 2010 or Conlisk et al.,
2007; Theorem 1.5), which has a close connection to a negative
binomial distribution. Suppose, instead of rule (2), the cell
abundances n1, n2, . . . , nK were generated as K independent
draws from a given negative binomial distribution. The sum of
these draws n1, n2, . . . , nK would be a random variable, not a
constant. However, if the multivariate distribution of n1, n2, . . . , nK
from these draws was conditioned to have the given total
abundance J, that conditional multivariate distribution would be
Polya-Eggenberger (e.g., see Conlisk et al., 2007; Theorem 1.5).
Thus, the empirical finding that the histogram of a grid sample n1,
n2, . . . , nK of given total abundance J tends to have a negative
binomial shape is expected under the colonization rule (2).

3. Local abundance distribution of Hubbell’s neutral theory

The most famous ecological model following rule (2) is the local
abundance distribution of Hubbell’s neutral theory (Hubbell,
2001). Hubbell’s context requires that the categories be reinter-
preted as species rather than spatial grid cells. Consider an “island”
on which K species may live. Let k = 1, 2, . . . , K index the species,
and let n1, n2, . . . , nK denote the numbers of individuals of the K
species on the island. Assume the island has J spots in total for
colonists to occupy, so

P
jnj� J.

Near the island is a large and stable “mainland” on which the K
species live in unchanging proportions a1, a2, . . . , aK. An island
colonist may be either an immigrant from the mainland or an
offspring of an existing island individual. Assume that the
probability of immigrant status is 1/(1 + b

P
jnj), which equals

one, as it should, when the island is empty (when
P

jnj = 0), and
which declines as the island populates. The probability of island
offspring status is the complementary probability b

P
jnj/

(1 + b
P

jnj). If the colonist is an immigrant, it will be of species k
with probability equal to the mainland frequency of species k,
namely ak. If the colonist is an island offspring, the individual will
be of species k with probability equal to the island frequency of
species k, namely nk/(

P
jnj). Under these assumptions, colonization

rule (2) applies, which generates a Polya-Eggenberger distribution
for the island abundances n1, n2, . . . , nK when the island is fully
colonized (

P
jnj = J) or at any colonization step along the way. Thus,

Hubbell’s local abundance distribution for the island is a Polya-
Eggenberger distribution.

Hubbell used a Markov chain approach in his analysis, not a
colonization rule approach. Later McKane et al. (2004) and Etienne
et al. (2007) used a differential equation approach; Etienne and
Alonso (2005) used a statistical sampling approach; and Conlisk
et al. (2010) proposed the colonization rule approach of (2).

4. Extinction, speciation, and the species abundance
distribution (SAD)

For a given community of species, such as the trees in a forest, a
“species abundance distribution” is a histogram listing the number
of species at the abundance values 1, 2, 3, . . . If SAD(n) denotes
the species abundance distribution, then SAD(1) is the number of
species with n = 1 individuals in the community; SAD(2) is the
number of species with n = 2 individuals in the community; and
SAD(n) is the number of species with n individuals in the
community. The function SAD(n) describes a salient property of
the community, often presented in field study reports.

A SAD typically has a hollow shape—downward sloping and
concave from above. In their broad review of SAD’s, McGill et al.
(2007, p. 995) call the hollow shape “one of ecology’s oldest and
most universal laws.” Although they list a “proliferation of models”
(p. 998) explaining the shape, they nonetheless call the hollow
shape “surprising” and “counterintuitive” (p. 997). In this section, I
present a simple colonization rule model of a SAD, and its hollow
shape, as a consequence of extinction and speciation. The model is
in the spirit of Hubbell’s analysis (2001, Chapter 5), but simpler.

Over the relatively short time spans of the local island model in
the preceding section, the mainland species proportions a1, a2,
. . . , aKwere treated as constants. However, over the very long time
spans relevant to extinction and speciation, the ak are variables.
Moving to these long time spans for an isolated community, let n1,
n2, . . . , nK be the abundances of the K species. The number of
species K is now a variable since it will change as extinctions and
speciations occur. Consider a colonization rule approach.

At each step in a sequence of colonization events, assume a
single individual is selected purely at random from the entire
population across all species in the isolated community. For a given
individual, this selection probability is 1/

P
knk. Assume the

selected individual experiences one of three exclusive and
exhaustive events according to given probabilities: (i) The
individual generates one offspring with probability b. (ii) The
individual dies with probability d, with d � b assumed. (iii) The
individual mutates into a new species with probability 1 � b � d.
The colonization rule is thus:

(3)

(4)

(5)

These three probabilities sum to one over the species index k. The
total number of species K may change. Suppose the selected
individual is not the only one of its species. Then, if the event is a
birth or a death, K will not change; but, if the event is a mutation, K
will increase by one. Alternatively, suppose the selected individual
is the only one of its species. Then, if the event is a birth, K will not
change; if the event is a death, K will decrease by one; and, if the
event is a mutation, K will increase by one.

Finally, assume there is a fixed total number of slots in the
community, denoted J, beyond which the total

P
knk may not go.

That is, J is a carrying capacity. Thus, a birth event drawn via
probability (3) is assumed to be a still birth if

P
knk= J. To start the

model, parameter values and initial values of n1, n2, . . . , nK are
needed.

Since deaths are possible, any species may go extinct, and in
principle global extinction must ultimately occur, though, for
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