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A B S T R A C T

Theory suggests that ecological systems exhibit a pronounced slow down in their dynamics, known as ‘critical
slowing down’ (CSD), before they undergo regime shifts or critical transitions. As a result of CSD, ecosystems
exhibit characteristic temporal and spatial changes which can be used as early warning signals of imminent
regime shifts. For temporal data, statistical methods to detect these generic indicators of ecosystem resilience are
well developed. However, for spatial data, despite a well developed theoretical framework, statistical methods
such as data pre-processing and null models to detect EWS are relatively poorly developed. In this manuscript,
we investigate the case of a common type of ecological spatial dataset which consists of binary values at each
location (e.g. occupied/unoccupied, tree/grass or coralline/bleached). We employ a cellular-automaton based
spatially-explicit model which generates data that mimics remotely sensed or field collected high-resolution
spatial data with a binary classification of the state variables at each location. We demonstrate that trends in two
spatial metrics, spatial variance and spatial skewness, of such binary spatial data lead to false, failed or mis-
leading signals of transitions. We find that, two other indicators, spatial autocorrelation at lag-1 and spectral
density ratio, accurately reflect CSD even with binary spatial data. To overcome the problems associated with
detection of EWS using spatial variance and skewness, we investigate a data pre-processing method called
‘coarse-graining’ which is inspired from the physics literature on phase transitions. Coarse-graining reduces the
spatial resolution of data by averaging state variables over small scales. Yet, it enables detection of CSD-based
spatial indicators of impending critical transitions. In summary, our study provides a theoretical basis, and
rigorous evaluation, of coarse-graining as a pre-processing step to analyse spatial datasets with discrete state
classifications.

1. Introduction

Ecosystems can undergo large and abrupt shifts in their states,
sometimes even for gradual changes in their drivers (May, 1977;
Scheffer et al., 2001). These shifts, also called regime shifts or critical
transitions, can be irreversible. Based on non-linear dynamics models,
researchers have devised tools to anticipate these transitions. These
tools are based on a generic principle that systems take longer to re-
cover from perturbations as they approach the transition, a phenom-
enon known as critical slowing down (CSD) (Wissel, 1984; Van Nes and
Scheffer, 2007; Scheffer et al., 2009). CSD leads to an increase in var-
iance, skewness, autocorrelation and reddening of power spectra in the
temporal and spatial dynamics of the ecosystem state (Kleinen et al.,

2003; Carpenter and Brock, 2006; Guttal and Jayaprakash, 2008;
Scheffer et al., 2009; Dakos et al., 2012; Xu et al., 2015). These char-
acteristic trends are called generic indicators of loss of ecological resi-
lience or generic early warning signals (EWS) of critical transitions.

Statistical methods to detect EWS from temporal data are well de-
veloped (see Dakos et al., 2012 for a review). These methods have been
empirically tested, with some success, in microbial systems, aquatic
systems, paleo-climatic records and financial markets (Drake and
Griffen, 2010; Carpenter et al., 2011; Dai et al., 2012; Veraart et al.,
2012; Dakos et al., 2008; Burthe et al., 2015; Guttal et al., 2016).
Statistical detection of these signals poses various challenges, including
the requirement of long and finely resolved time series data (Dakos
et al., 2012; Boettiger and Hastings, 2012; Burthe et al., 2015), but such
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data may not be available for many ecosystems. In some cases, this
problem can be partly resolved by analysing spatial data over relatively
small time scales (Guttal and Jayaprakash, 2009; Dakos et al., 2010;
Carpenter and Brock, 2010; Kéfi et al., 2014). Spatial indicators have
recently been empirically tested in laboratory experiments using
aquatic microcosms and microbial systems, as well as field data from
aquatic and savanna ecosystems (Drake and Griffen, 2010; Dai et al.,
2013; Cline et al., 2014; Ratajczak et al., 2014; Eby et al., 2017). In-
creasing availability of high resolution imagery from satellite and other
aerial images makes the computation of spatial indicators feasible.
Therefore, rigorous development of statistical methods to detect EWS
from spatial data can have huge implications in assessing the stability of
ecosystems (Kéfi et al., 2014).

High resolution spatial data obtained from aerial images or field
observations is often classified as discrete variables at fine spatial
scales, representing only presence/absence of the quantity of interest.
For example, a pixel of a high resolution image of semi-arid ecosystems
can be classified as occupied or unoccupied by vegetation (Scanlon
et al., 2007; Kéfi et al., 2007), or as woody or grassland areas (Reed
et al., 2009; Eby et al., 2017); in a coral system, a pixel can be classified
as coralline or bleached (Berkelmans et al., 2004). Such data are typi-
cally represented by binary (i.e. 0 or 1) values. Binary data may arise
even in systems where the underlying variable is continuous, if the local
states are classified based on a threshold criterion (e.g., grass domi-
nated versus shrub dominated pixel). Consequently, binary spatial data
are abundant in ecology. Development of statistical tools of data pre-
processing and null models for spatial EWS of critical transitions, in
particular those of discrete-valued spatial data, poses interesting chal-
lenges (Kéfi et al., 2014). In Section 2.1 of this manuscript, we argue
that trends in spatial metrics like variance and skewness for binary-
classified data are independent of the spatial structure of the landscape.
Rather, it is determined only by the density of occupied sites in the
landscape. This is true irrespective of the density at which the system
may undergo a critical transition. Consequently, these metrics can lead
to false, failed or misleading EWS of critical transitions.

This poses the question about whether the trends of generic spatial
metrics, such as variance and skewness, can act as EWS for spatial data
with discrete classification variables at fine scales. Previous studies
have suggested a local averaging method called ‘coarse-graining’ to
overcome this problem (Kéfi et al., 2014; Eby et al., 2017). A few stu-
dies have also employed coarse-graining prior to estimating spatial EWS
(Dakos et al., 2011; Seekell and Dakos, 2015) but in an implicit or ad
hoc manner. However, the theoretical underpinning of this data pre-
processing method and its effectiveness in detecting EWS remain un-
clear.

The aim of this manuscript is to present an intuitive and theoretical
basis for, and an evaluation of the effectiveness of, the data pre-pro-
cessing step of coarse-graining in detecting EWS in binary-valued spa-
tial data. We begin by showing the analytically expected trends of
generic spatial metrics in binary-classified spatial data. We argue that
trends of spatial variance and skewness of such data can be misleading
in terms of detecting an imminent transition. We provide a theoretical
argument for the necessity of a pre-processing step called coarse-
graining to detect EWS in spatial data. We also propose a method to
identify an ‘optimal’ scale of coarse-graining that enables detection of
EWS. We illustrate the method of coarse-graining and we analyse its
effectiveness using a simple spatially explicit population model. We
show that after coarse-graining the data, these metrics typically show
the theoretically expected trends towards an approaching transition.
We also show that spatial autocorrelation and power spectrum, two
other metrics for spatial data, may not need coarse-graining for the
detection of EWS.

Box 1: Nomenclature

1. Ecological landscape: Matrix of cells containing densities or other
ecological variable

2. Site: Each cell of the data matrix
3. Local state: Ecological measurement value (occupied by a tree or

empty) in the cell
4. Ecosystem state (or regime): Average global density of the landscape
5. Coarse-grained variable: Local state variable after local averaging
6. Discrete (or binary) state spatial data: A landscape with local dis-

crete/binary state variables

;1;

2. Early warning metrics in binary-state spatial data and
theoretical basis for coarse-graining

Consider an ecological landscape where ‘raw data’ at fine spatial
scales is classified into binary state values, such as occupied or un-
occupied, tree or grass, coral or bleached. We call such datasets binary-
state spatial data (more generally, discrete-state spatial data). Below,
we mathematically show that two of these metrics, spatial variance and
spatial skewness, capture only density-dependent trends when applied
to such raw spatial datasets. We then present a theoretical basis for the
necessity for pre-processing such raw spatial data with a local averaging
method, called coarse-graining, before computing spatial metrics of
regime shifts.

2.1. Expected trends of spatial indicators for binary-state spatial data

Binary-state spatial data can be represented by a matrix whose en-
tries are either 1's (representing occupied sites in the landscape) or 0's
(representing unoccupied sites). We define the density of such a land-
scape as the proportion of occupied cells in the matrix, denoted by ρ .
For a landscape with a density of ρ , the expression for spatial variance
(σraw

2 ) and skewness (γraw) are given by the following identities (see
Appendix A.1 for derivation of these expressions; also see Appendix S3
in Eby et al., 2017):

= −σ ρ ρ(1 )raw
2 (1)

=

−

−

γ
ρ

ρ ρ
1 2

(1 )raw
(2)

From Eq. (1), we see that spatial variance varies non-monotonically
as a function of density (ρ ) and peaks at =ρ 0.5 (i.e. at 50% cover;
Fig. 1A). Spatial skewness (Eq. (2)) decreases monotonically, from large
positive values to large negative values, as a function of density
(Fig. 1B). At half density, i.e. a landscape with equal number of empty
and filled sites, the distribution of states would be symmetric around its
mean; therefore, the skewness will be zero. These above density-de-
pendent trends of spatial variance and skewness arise due to the dis-
crete nature of the fine scale state variables. We emphasize that the
derivation of these trends depends only on the density of occupied sites
in the landscape (ρ ) but not on its spatial configuration. Therefore,
these trends are unrelated to the phenomenon of CSD that occurs in the
vicinity of critical transitions.

We discuss the expected trends for two other spatial metrics: spatial
autocorrelation (Dakos et al., 2010) and spectral properties (Carpenter
and Brock, 2010) (see Section 3). Spatial autocorrelation measures
whether state variables are correlated (or similar) over space; thus it
measures the structure in spatial data. Spectral function represents
spatial patterns as superposition of periodic patterns hidden in the data;
this enables detection of periodicity as well as characterisation of
fractals in data (Bertiller et al., 2002; Couteron, 2002; Kéfi et al., 2014).
Furthermore, it is worth noting that spectral function and correlation
function are related, as Fourier transforms of each other, and hence are
mathematically equivalent (Reif, 2009). Hence, both spatial auto-
correlation and spectral function depend on the underlying spatial
structure. Unlike spatial variance and skewness of binary-state land-
scape data, these properties are not merely dependent on density.
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