
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Article

Spatially heterogeneous stressors can alter the performance of indicators of
regime shifts

Alexandre Génina,1, Sabiha Majumderb,1, Sumithra Sankaranc,1, Florian D. Schneidera,d,
Alain Daneta, Miguel Berdugoe, Vishwesha Guttalc, Sonia Kéfia,⁎

a ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
bDepartment of Physics, Indian Institute of Science, Bengaluru 560012, India
c Center for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
d Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
e Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/
n, Móstoles 28933, Spain

A R T I C L E I N F O

Keywords:
Early warning signals
Critical slowing down
Tipping points
Critical transition
Catastrophic shift
Spatial pattern
Patch size distribution

A B S T R A C T

Mathematical models together with empirical tests suggest that it may be possible to detect leading indicators, or
early warnings, of approaching shifts in ecosystems. Previous studies have often relied on ecological systems
where the stressor (e.g. temperature, precipitation) is assumed to act homogeneously in space. Many ecological
systems are, however, prone to spatially heterogeneous stresses (or ‘spatial stressors’), such as grazing, whose
strength varies as a function of local vegetation patchiness. Here, we employed three well-studied spatially
explicit ecological models to investigate how spatial stressors influence (a) the dynamics and resilience of
ecosystems and (b) the robustness of early warnings of approaching ecosystem shifts. Mean-field and numerical
simulations of the models suggested that spatial stressors could affect the stability and the number of equilibria
of the system. Trends of spatial and temporal indicators were broadly consistent with the theory, i.e. they
exhibited increasing trends as the system approached ecosystem shifts. However, in two of the three models, at
high levels of spatial stress, spatial indicators could either exhibit trends opposite to those expected by the
theory, or show no signals at all. Our results suggest that spatial stressors can interfere with the spatial patterns
and thereby with the theoretically expected trends of early warning signals of ecosystem shifts. This highlights,
once again, the importance of having a good knowledge of the ecosystem under study to be able to accurately
interpret the indicator trends observed.

1. Introduction

In some ecosystems, small changes in external conditions may
provoke abrupt changes (or shifts) in their states (Scheffer et al., 2001).
For example, shallow lakes can switch from a clear water to a turbid
state (Scheffer et al., 2001), drylands can become deserts and lose most
of their perennial vegetation (Rietkerk et al., 2004), and fish stock can
collapse because of overfishing (Hare and Mantua, 2000). Because of
the potential negative consequences of such shifts, both from ecological
and economic perspectives, extensive efforts were devoted to identi-
fying indicators of approaching shifts (Scheffer et al., 2009), and
quantitative indicators were devised based on the phenomenon of
‘critical slowing down’ (Wissel, 1984). Critical slowing down occurs as
a dynamical system approaches a tipping (or critical) point, i.e. a point

at which the stability of a system changes qualitatively (Wissel, 1984).
Specifically, as a dynamical system approaches a critical point, it takes
increasingly long to recover from small perturbations (i.e. it slows
down). This results in increased variance, skewness and autocorrelation
in the temporal dynamics of the system (Carpenter and Brock, 2006;
Van Nes and Scheffer, 2007; Guttal and Jayaprakash, 2008). Moreover,
spectral properties of the temporal series show reddening in the vicinity
of critical points (Kleinen et al., 2003). These statistical indicators have
been referred to as generic temporal indicators (Dakos et al., 2012).

The spatial equivalents to these statistics are expected to show
signatures of approaching critical points as well (Guttal and
Jayaprakash, 2009; Carpenter and Brock, 2010; Dakos et al., 2011,
2010; Kéfi et al., 2014). The so-called generic spatial indicators – spatial
variance, spatial skewness, near-neighbor spatial correlation and spatial
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spectral density – are all expected to increase as a system moves to-
wards a critical point. These relatively simple statistical indicators have
attracted a lot of attention in the literature because they can be mea-
sured directly by monitoring ecosystem characteristics in the field (e.g.
vegetation cover), and this regardless of the ecological details of the
system (Scheffer et al., 2009). Various empirical studies have demon-
strated the validity of the temporal, and to a lesser extent of the spatial,
indicators of approaching ecosystem shifts (Kéfi et al., 2007a; Dai et al.,
2012, 2013; Cline et al., 2014; Benedetti-Cecchi et al., 2015; Scheffer
et al., 2015; Eby et al., 2017).

Despite the generality of the underlying phenomenon of critical
slowing down, the generic temporal and spatial indicators have been
shown to have limitations in various types of ecological systems, such
as those with chaotic and long transient phenomena (Hastings and
Wysham, 2010), those with multiple dynamic species or variables
(Guttal and Jayaprakash, 2008; Chisholm and Filotas, 2009), those with
time-delays (Guttal et al., 2013), those driven by stochasticity
(Benedetti-Cecchi et al., 2015; Sharma et al., 2015; Guttal et al., 2016)
as well as in ecosystems exhibiting spatial patterns (Dakos et al., 2011).
In the case of spatially structured ecosystems, such as drylands, studies
have suggested that the generic indicators may fail (Dakos et al., 2011),
but that metrics based on other aspects of the distribution of organisms
in space were likely to offer alternative and potentially more reliable
indicators of degradation (Kéfi et al., 2007a; Kéfi et al., 2014).

More precisely, in spatially structured ecosystems, the clusters (i.e.
set of contiguous occupied cells connected through their nearest
neighbours) can be described quantitatively in terms of the distribution
of their sizes, commonly termed the patch size distribution. Previous
studies have suggested that patch size distributions are generally ex-
pected to fit heavy-tailed functions, such as a power-laws (Pascual
et al., 2002; Kéfi et al., 2011), but when an ecosystem is subjected to
stress, the patch size distributions would become increasingly truncated
and eventually reach an exponential distribution before the collapse of
the ecosystem (Kéfi et al., 2007a; Kéfi et al., 2011; Kéfi et al., 2014).
Only a few studies have tested those patch-based indicators on actual
ecological data so far (but see e.g. Kéfi et al., 2007a; Lin et al., 2010;
Berdugo et al., 2017), and despite promising results there does not seem
to be a consensus yet about their detectability and usefulness as in-
dicators of approaching ecosystem shifts (Maestre and Escudero, 2009,
2010; Kéfi et al., 2010a; Lin et al., 2010; Moreno-de las Heras et al.,
2011; Xu et al., 2015; Weerman et al., 2012).

In sum, a number of indicators of approaching ecosystem shifts have
been suggested in the literature so far, but our understanding of their
reliability is still limited, in particular for spatially structured ecosys-
tems (Dakos et al., 2011; Kéfi et al., 2014). Most of the studies in-
vestigating indicators of ecosystem shifts have focused on cases where
the external stress is considered homogeneous in space. There are,
however, a number of real situations where stressors are spatially
heterogeneous (e.g. waves, wind, grazing). For example, in a meadow
with a fragmented vegetation cover, the grazing pressure might not be
the same everywhere in the landscape but depends, among other things,
on the movement of the grazers and where they decide to eat (Adler
et al., 2001). Such a spatial heterogeneous stress is expected to affect
the size and shape of the vegetation clusters and thereby the detect-
ability and reliability of at least the indicators based on spatial patterns
(see Schneider and Kéfi, 2016 for a study of the patch-based indicators
in a grazing system). This naturally raises the question that we aimed to
address in this manuscript: How does spatially heterogeneous stress
affect the spatial patterns in the ecosystems and what does that mean
for the performance of the temporal and spatial indicators of ecosystem
shifts (Dakos et al., 2012; Kéfi et al., 2014)? Remarkably, the behavior
of the generic temporal and spatial indicators of ecosystem shifts cur-
rently available in the literature has not been studied in spatially
structured ecosystems submitted to a spatially heterogeneous stress so
far. Such knowledge could help improve our ability to anticipate eco-
system degradation in spatially structured ecosystems.

Here, we addressed this gap in our understanding using, as ex-
amples, models of three ecological systems subjected to spatially het-
erogeneous stress: mussel bed patterns caused by wave-induced dis-
turbance (Guichard et al., 2003), vegetation of a dryland ecosystem
under the influence of grazing (Schneider and Kéfi, 2016), and forest
gaps created by disturbances such as fire or wind (Kubo et al., 1996). In
previous studies, these lattice-based models, nonlinear and stochastic,
have been shown to exhibit spatial patterns in the form of clusters of
individuals (i.e. patches) as well as power law scaling in the geometry
of these clusters (Pascual et al., 2002; Roy et al., 2003). We subjected
these model ecosystems to increasing stress levels. We conducted mean-
field analyses, i.e. discarding the spatially explicit aspects of the
models, to describe the relationship between the equilibrium state of
the ecosystems and the stress level, based on which we obtained ex-
pected trends of all the generic indicators along the gradient of stress.
We then investigated whether the generic (temporal and spatial) and
patch-based indicators provided early warning signals of approaching
critical points in the three models.

2. Methods

We adopted the following approach to address our research ques-
tions. We investigated three spatially-explicit models representing three
ecological systems. Each of these three models includes both a spatially
homogeneous and a spatially heterogeneous stress. For each model, we
performed a mean field analysis, which consists of simplifying the
models by ignoring their spatial aspects (see upcoming paragraph on
‘Mean field approximation’ for more details). As a consequence of this
simplification, relatively simple dynamical equations can be written
and solved to obtain the stable and unstable equilibria along gradients
of stress (i.e. bifurcation diagrams). This allowed us to make predictions
about expected trends of the indicators. We then ran spatially explicit
simulations of the models along gradients of homogeneous stressors and
this for different values of the heterogeneous stressors. We calculated
the generic and patch-based indicators along these gradients and
compared the behavior of the indicators for different values of the
heterogeneous stressor in the three models.

2.1. The models

We analyzed three spatially-explicit models representing three
ecological systems exhibiting spatial patterns due to different under-
lying ecological mechanisms.

(i) The first model describes mussel dynamics where wave dis-
turbance creates gaps in the mussel bed (Guichard et al., 2003) (here-
after referred to as the ‘mussel bed model’). In the mussel bed model,
mussels are disturbed by strong waves that create gaps; the edges of the
gaps consist of mussels that lost their byssal thread attachment to some
of their neighbors and to the substratum (i.e. disturbed mussels). As a
consequence, the edges of newly formed gaps are temporarily unstable
and more susceptible to disturbance; this means that the disturbance
spreads via the unstable edges in this model (by making neighboring
mussels become themselves perturbed). The disturbance is decomposed
in two stresses in this model: the spatially homogeneous stress is the
probability that a mussel taken anywhere in the system becomes per-
turbed (density-independent probability), and the spatially hetero-
geneous stress is related to the spread of the disturbance to near-
neighbors (i.e. the probability that a mussel which has at least one
disturbed neighbor becomes disturbed itself).

(ii) The second model describes vegetation dynamics in semi-arid
ecosystems, where plants are eaten by grazers (Schneider and Kéfi, 2016)
(hereafter referred to as the ‘grazing model’). In the grazing model,
droughts are assumed to affect the recruitment probability of new in-
dividuals everywhere in the landscape (spatially homogeneous stress);
grazing affects plant mortality, but plants with more neighbors mutually
benefit from their investment in protective structures, such as thorns, and
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