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A B S T R A C T

The longitudinal dispersion coefficient is an important parameter for describing the transport processes in rivers.
Riparian vegetation significantly influences the velocity profile and transport processes. This paper examines the
longitudinal dispersion coefficient under the condition that rigid emergent vegetation grows symmetrically
along the river bank. We build a three-zone model by extending the N-zone models of Chickwendu and
Boxall & Guymer. We also analyze the velocity profiles that are significantly affected by vegetation to estimate
the parameters in our model. Our tests using the experimental data from a series of experiments validate the
acceptable accuracy of our three-zone model.

1. Introduction

The transport of contaminants is crucial to the chemical and
biological processes that regulate the river environments (Perucca
et al., 2009). The contaminants in water can be transported in various
ways, including molecular diffusion, advection, turbulent diffusion,
dispersion, and convection, among which dispersion is the most
dominant in natural rivers. To determine the transport condition of
contaminants in rivers, many theoretical and experimental studies have
proposed and investigated the longitudinal dispersion coefficient.
However, these studies have mostly ignored the influence of riparian
vegetation on flow structure and transport of contaminants, but instead
advocated for the removal of such vegetation to improve the convey-
ance of channels (López and García, 1998; Murphy et al., 2007).
Nonetheless, recent studies have realized that vegetation directly
improves the quality of water and ecology along the river (Kadlec
and Knight, 1996). Other studies show that riparian vegetation
significantly influences the transport of contaminants (Perucca et al.,
2009; Murphy et al., 2007).

Taylor (Taylor, 1954) introduced the longitudinal dispersion con-
cept using the following advection–diffusion differential equation in
pipe flow:
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where C is the cross-section averaged concentration, t is the time, u is
the time-averaged velocity, x is the longitudinal coordinate oriented to

the flow, and Kx is the longitudinal dispersion coefficient.
Many studies have investigated longitudinal dispersion based on the

theory of Taylor (1954). For instance, Fischer (1967) proposed the
following equation to predict the longitudinal dispersion in open
channel flows caused by the velocity gradient in the transverse
direction:
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where A is the cross-sectional area, B is the width of the channel, h y( ) is
the local flow depth, u y u y V′( ) = ( ) − is the deviation of the depth-
averaged velocity, ∫u y u y z dz( ) = ( , )

h y

0
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is the local-depth-averaged

longitudinal velocity, u y z( , ) is the local longitudinal velocity, V is the
cross-section averaged velocity, and e y( ) is the local transverse mixing
coefficient. Despite having a strong theoretical basis, this integral
method has a complicated format. To obtain the integral result of Eq.
(2), Seo and Baek (2004) used the beta density function to describe the
transverse velocity distribution of natural rivers. Despite favorably
describing the velocity distribution, the parameters of this function
must be obtained using some measurements, which suggests that the
maximum velocity and its location must be specified to estimate the
parameters (Seo and Baek, 2004). In 1991, Shiono and Wellington
(1991) proposed the SKM (Shiono and Knight Method) from the
momentum equation to solve the lateral distribution of depth-averaged
longitudinal velocity. Wang and Huai (2016) applied Fourier transfor-
mation into the SKM results to simplify the computation process of
longitudinal dispersion.
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To avoid complicated integration, Fischer (1975) proposed the
following empirical formula:
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where u* is the friction velocity and H is the mean water depth.
Many researchers have adopted this formula and proposed a large

number of similar formulae. Deng and Chu (2001) assumed a parabolic
equation to describe the cross-section shape and obtained the following:
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where e y( )0 can be obtained as follows:
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By analyzing 116 data sets from different rivers, Zeng and Huai
(2013) replaced the friction velocity u* with the cross-sectional
averaged velocity V to fit the datasets, that is,

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟K B

H
V
u

HV= 5.4
*

.x

0.7 0.13

(6)

Through a regression analysis, Wang and Huai (2016) proposed the
following empirical formula in rectangular flumes that will be used in
this paper:
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Unlike the methods above, a zoning method was constructed by
dividing flow into zones (Chikwendu and Ojiakor, 1985; Chikwendu,
1986a). The starting point of this method was the slow zone model
dividing the flow into two zones (Chikwendu and Ojiakor, 1985). The
resulting coupled dispersion equations were then obtained and solved
(Chikwendu, 1986a). Chikwendu (1986a) proposed an N-zone model
for calculating the longitudinal dispersion coefficient on the basis of the
slow-zone model. Given that dispersion is caused by the non-uniformity
of time-averaged velocity, Chikwendu (1986a) considered the non-
uniformity of longitudinal velocity in the vertical direction; next, he
outlined a mathematical approach for predicting overall dispersion
coefficients in a system with N distinct velocity zones over the vertical
plane. If N is sufficiently large, then each zone is assumed to have the
same time-averaged velocity. Chikwendu (1986a) then proposed the
following N-zone model:
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where α h H=j j , H is the depth of the water, hj is the thickness of the j

zone,
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V α V α= ∑ ∑a b j a

b
j j j a

b
j, = = , Vj is the cross-section averaged

velocity of the j zone, and Kxj is the longitudinal dispersion in the j
zone. bj j( +1) is the transverse exchange coefficient between the j zone
and the j+1 zone. This model (Eq. (8)) was applied in the pipe and
plate flow (Chikwendu, 1986a; Chikwendu, 1986b). An example of the
use of the N-zone model in an open channel flow is available in the
work of Pearson et al. (2002). Boxall and Guymer (2007) extended the
method to natural rivers, in which case the transverse profile of depth-
averaged velocity dominates the longitudinal dispersion. Boxall and
Guymer (2007) changed some parameters in Eq. (8), as discussed in
Section 2.2, and then proved that this method could be used to calculate
the longitudinal dispersion in meandering channels.

With regard to longitudinal dispersion in vegetated flows, Lightbody

and Nepf (2006) conducted an experimental and theoretical study on
the longitudinal dispersion in emergent salt marsh vegetation with a
focus on the dispersion process arising from stem-scale and depth-scale
velocity heterogeneities. Nepf et al. (2007) found that canopy water
retention affects longitudinal dispersion much through a transient
storage process. Murphy et al. (2007) applied the N-zone model of
Chikwendu (1986a) into open channel flows with submerged vegeta-
tion and then divided the flow into two zones (N = 2) to predict
longitudinal dispersion. Shucksmith et al. (2010) studied the relation-
ships between the longitudinal dispersion coefficient and Hu* with a
series of experiments conducted in emergent and submerged vegetated
flows. Furthermore, Shucksmith et al. (2011) proposed an N-zone
model (N → ∞) to predict the longitudinal dispersion in a submerged
vegetated flow. A uniform transversal distribution of vegetation was
constantly assumed in the aforementioned studies.

In the present study, we apply the N-zone model (N = 3) proposed
by Boxall and Guymer (2007) to address the longitudinal dispersion in
symmetric compound channels with emergent vegetation (Fig. 1).

To determine the dispersion process in symmetric compound
channels with emergent vegetation, the unique flow structure under
this condition must be considered. White and Nepf (2008) conducted
several experiments and proposed an alternative vortex-based method
to describe the lateral distribution of depth-averaged velocity in
partially vegetated channels. Chen et al. (2010), Huai et al. (2009)
and Liu et al. (2013) extended the SKM into this condition and built the
following momentum equations:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥gHS fu y

y
λH f u y u y

y
C aH U

y
H uv

− 1
8

( ) + ∂
∂ 8

( ) ∂ ( )
∂

− 1
2

= ∂
∂

[ ( ) ]

d v v

d

0
2 2

1/2
2

(9)

and

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥gHS fu y

y
λH f u y u y

y y
H uv− 1

8
( ) + ∂

∂ 8
( ) ∂ ( )

∂
= ∂

∂
[ ( ) ]d0

2 2
1/2

(10)

in the vegetation zone and main channel, respectively, where g is
the gravitational acceleration, H is the flow depth, S0 is the slope of the
bed, λ is the lateral dimensionless eddy viscosity, u and v are the time-
averaged local velocities in the longitudinal and lateral directions, and

∫uv uvdz( ) =d
H

0
,Cd is the drag force coefficient (Cd ≈ 1.0according to Li

et al. (2015)). Moreover, a is the projected frontal area of the vegetation
per unit volume, Uv is the depth-averaged velocity around the vegeta-
tion, Hv is the height of the vegetation when the vegetation is
submerged, and equals to H when the vegetation is emergent.

Perucca et al. (2009) also used the SKM to determine the lateral
distribution of depth-averaged velocity in partially vegetated channels.
The result of u y( ) was then taken into Eq. (2) to calculate the
longitudinal dispersion coefficient. However, previous studies (Liu
et al., 2013; Fernandes et al., 2014) reveal that the right-hand terms
in Eqs. (9) and (10), which represents the secondary current is hard to
calculate and might influence the accuracy a lot. On the other hand, the
analytical solution of Eqs. (9) and (10), u y( ) = 1/2, is also difficult to
integral (A1, A2, ω, γ1, and γ2 are all obtainable parameters).

This paper analyzes the lateral distribution of depth-averaged
longitudinal velocity and extends the theories of Boxall and Guymer

Fig. 1. Sketch of the cross section.
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