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A B S T R A C T

Long-term ecological monitoring programs often use linear mixed models to estimate trend in an ecological
indicator sampled across large landscapes. A linear mixed model is versatile for estimating a linear trend in time
as well as components of spatial and temporal variation in the case of unbalanced data structures, which are
common in complex monitoring designs where limited sampling effort must be optimized over time and space. A
power analysis was used to inform a lake chemistry monitoring design, including selecting the most appropriate
temporal revisit design. Pilot data from surveys of lakes across large wilderness national parks (Sequoia, Kings
Canyon, and Yosemite national parks) were used to obtain variance components for a Monte Carlo power si-
mulation. Using a linear mixed model for a range of temporal revisit designs, sample sizes, and trend magni-
tudes, we evaluated the power to detect trend, the trend test size, and the relative bias of trend coefficient
estimates for four continuous and normally distributed indicators. Contrary to prior research based on large-
sample approximations that identified a single panel of sites visited annually as the revisit design generating the
highest power, we found that the power to detect a 12-year trend based on the Wald t-test from a linear mixed
model may be optimized by obtaining unbalanced data sets with limited to no annual replication. We emphasize
the importance of examining variance composition, sample size, and the power and size of the trend test with
Monte Carlo simulation when allocating sampling effort over time and space.

1. Introduction

Increasing concerns about impacts of global change on natural re-
sources motivate the implementation of long-term monitoring pro-
grams to periodically assess resource condition. Land-management
agencies, mandated by federal laws such as the Clean Air Act (Public
Law 91-604), the Clean Water Act (Public Law 91-662), and the
National Parks Omnibus Management Act of 1998 (Public Law 105-
391) to monitor natural resources, often implement long-term surveys
to track specific environmental indicators over time (Diaz-Ramos et al.,
1996; Fancy et al., 2008; Laustrup and Wlosinski, 1991). In 2001, the
National Park Service (NPS) initiated a long-term ecological monitoring
program, the Vital Signs Monitoring Program, to monitor targeted
physical, chemical, and biological indicators of park health over time
and space (Fancy et al., 2008).

Trend analysis is used to detect, quantify, and assess the significance
of gradual and sustained changes in an outcome over time (Urquhart

et al., 1993). We adopt the understanding that trend in an indicator
over time may not be strictly linear, but change consisting of a sub-
stantial linear component is often relevant to natural resource man-
agement (Urquhart and Kincaid, 1999). This linear increase or decrease
over time is the trend metric of interest here. Natural resource man-
agers are often tasked with the challenge of managing resources across
expansive landscapes. Long-term monitoring ideally allows for broad-
scale inference over a population of interest rather than the estimation
of a localized trend at a specific site (Urquhart et al., 1998), where a site
represents a spatial sampling unit defined as a point or an areal unit.
Suites of indicators may be collected at a site and common trends
among those indicators may be examined in a multivariate context with
modular artificial neural networks (Wu et al., 2010), multivariate
Mann-Kendall trend test (Lettenmeier, 1988), and dynamic factor
analysis (Zuur et al., 2003). In this research we focus on univariate
analysis trend analysis tools.

Information from status and trend analyses may be used to inform
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local management decisions and state and federal environmental policy
(Fancy et al., 2008; Nichols and Williams, 2006). Land-management
agencies must often balance dual goals of characterizing the current
status and temporal trend in indicators of resource condition. The status
of an indicator is usually calculated within a particular time frame,
often annually, and provides an estimate of the indicator’s condition.
Status of an ecological indicator is frequently represented by a mean,
proportion, percentile, or total (Kincaid and Olsen, 2012). In this work,
our primary objective is to detect linear trends in the mean of an in-
dicator using a linear mixed model.

Linear mixed models have been applied to a diverse range of out-
comes including guillemot abundance (Sims et al., 2006), gazelle den-
sity (Piepho and Ogutu, 2002), salmon habitat characteristics in Pacific
Northwestern streams (Larsen et al., 2004), and lake measurements of
chlorophyll-a (VanLeeuwen et al., 1996). The linear mixed model of
Piepho and Ogutu (2002) provides a flexible framework for linear trend
estimation while accounting for sources of variation specific to the
system of interest. The Piepho and Ogutu model has been applied to
trend analyses of indicators of forest health (Perles et al., 2014), prairie
grass seed establishment (Carrington, 2014), bull trout abundance
(Meyer et al., 2014), and salmonid habitat (Anlauf et al., 2011). The
linear mixed model provides a useful basis for trend inference from
multiple sites because the spatio-temporal replication can be used to
model the correlation among observations collected within the same
year and/or site. Failure to account for correlation in space and time
may cause underestimation of the standard error of the trend estimate
and erroneous trend inference (Zuur et al., 2007).

Assume that a probabilistic sample consisting of n total observations
is obtained from annual samples of s sites, for T years in the monitoring
period, and m visits to a site within a given year. Let i index sites, j index
years, and k index within-year visits to a site. For “unbalanced” revisit
designs in which all sites are not visited every year, the number of years
that each site is visited varies so that n≠ s× T×m; indexing can re-
flect this imbalance accordingly. We assume that all sampling units
contributing to the trend estimate are selected probabilistically and
with equal probability. A weaker assumption for general modeling as-
serts that model-based inference is valid if sites are selected irrespective
to the value of the outcome of interest at each site (Schreuder et al.,
2001). However, we recommend probabilistic sampling as a defensible
basis for unbiased population-level inference.

The general linear mixed model proposed by Piepho and Ogutu
(2002) is as follows:

= + + + + + +y γ w γ b a w t c e ,ijk j j i j i ij ijk0 1

where i=1, …, s; j=1, …, T; k=1, …, m; and

yijk= the natural-log transformed outcome of interest for the kth

replicate measurement in the ith site in the jth year;
wj= integer representing jth year (covariate);
γ0 and γ1= fixed intercept (status) and slope (trend) effects of the
linear trend model;
ai=random effect for the ith site, independent and identically dis-
tributed as N(0, σsite

2 );
bj=random effect for the jth year, independent and identically
distributed as N(0, σyear

2 );
ti=random slope for the ith site, independent and identically dis-
tributed as N(0, σslope

2 );
cij=random interaction term of the ith site and jth year, independent
and identically distributed as N(0, σint

2 ); and
eijk=unexplained error, independent and identically distributed as
N(0, σe

2).

We applied a natural logarithm transformation to the outcome of
interest to obtain a useful estimate of multiplicative trend as well as to
mitigate increasing variation in residuals, as is often observed for eco-
logical indicators. The fixed effects vector is defined as γ={γ0, γ1}

where γ0 represents the baseline status and γ1 is the linear trend coef-
ficient of the log-transformed indicator. Therefore, γ1= log(1+ λ),
where 100 * λ is the percentage change observed each year. For ex-
ample, a 4% annual increase in the population mean corresponds to a
value of λ=0.04, and a 4% annual decrease in the population mean
implies λ=−0.04. The proportional annual trend on the original scale
of the indicator is calculated as λ=exp(γ1) – 1, where the subtraction
of 1 yields a positive estimate for increasing proportional annual trend
and a negative value for decreasing proportional annual trend.

The fixed effects are calculated with generalized least squares esti-
mation (Piepho and Ogutu, 2002). If additional site-level covariates are
available, the fixed effects vector could be modified to include these
predictors. For example, if opposing trends occurred in different ele-
vational classes, including an interaction term for elevational classes
and the fixed year term would provide useful trend inference. Linear
population-level trend on the transformed scale is estimated by the
fixed slope effect, γ1, which provides an average of site-level trends for
an estimate of trend across the entire population. Site-specific trends
may be obtained by adding the estimate of the random site-level slope
effect of site i to the population-level trend estimate (γ1+ ti). Ecologi-
cally, this captures spatial variation in site-level trends which can be
meaningful as this variation is likely related to environmental hetero-
geneity that is informative to natural resource managers. The standard
error of the site-level trend estimate is a function of the fixed and
random effects design matrices, the estimated variance of the outcome
yij, and the variance component for random slope variation,
σslope

2 (Verbeke and Molenberghs, 2000). The significance of the esti-
mated trend is assessed with the Wald t-statistic using the standard
error obtained from the restricted maximum likelihood (REML)-esti-
mated variance components. The Wald t-test demonstrates nominal test
size when data are unbalanced and Satterthwaite (1946) degrees of
freedom are used (Piepho and Ogutu, 2002), so this test is desirable
when examining the power of trend tests for data collected under
various revisit designs.

The random effects portion of the mixed model partitions the error
term into variance components, including random site effects (ai) and
coherent year effects (bj) (Urquhart et al., 1993), a random site-by-year
interaction (cij) (Urquhart and Kincaid, 1999), and a random slope ef-
fect for each site (ti) (Piepho and Ogutu, 2002; VanLeeuwen et al.,
1996). When the random intercept and slope for a site are modeled
jointly as multivariate normal random vectors with Cov(ai, ti) = σat, the
estimate of the site-to-site variance, σsite

2 , is the same regardless of how
the wj are defined. This assumption results in an invariant trend test,
which does not change with shifts in the time covariate (Piepho and
Ogutu, 2002).

Trend models may also include a site-by-year interaction term (cij)
when sites are visited on multiple occasions within the same year.
Visiting a larger number of unique sites may be a better use of sampling
effort than within-year replication (VanLeeuwen et al., 1996), so we do
not include those terms here and assume at most a single annual visit to
a site (m=1). When within-year visits are not an option, such as with
remote sites or populations sensitive to excessive trampling, ephemeral
variation due to random site-by-year interaction σ( )int

2 is inestimable and
absorbed by the residual error (σe2). However, random slopes, which
are the linear component of the random site-by-year interaction
(VanLeeuwen et al., 1996), are estimable without replication within a
site and year.

The ability to accurately and precisely detect a desired trend in the
population of interest may be assessed with a statistical power analysis.
Power analysis is a useful tool in aiding development of sample designs
and determining how best to allocate limited resources to meet status
and trend monitoring objectives. Given that a hypothesis test preserves
nominal test size (i.e., the test reflects the nominal Type I error rate, α),
statistical power may be assessed to determine if a proposed monitoring
plan will meet trend detection objectives. For long-term monitoring, the
cost of a Type I error may be far less than the cost of a Type II error.
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