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A B S T R A C T

Testing soil salinity assessment methodologies over different regions is important for future continental and
global scale applications. A novel regional-scale soil salinity modeling approach using plant-performance metrics
was proposed by Zhang et al. (2015) for farmland in the Yellow River Delta, China, a region with a humid
continental/subtropical climate. The one-year integral of temporally interpolated MODIS Enhanced Vegetation
Index (EVI) time series data was proposed as an explanatory variable for agricultural soil salinity modeling.
Here, we test such a methodology in California’s Central Valley, USA, a region with a semi-arid Mediterranean
climate. Time series of EVI, Normalized Difference Vegetation Index (NDVI), and Canopy Response Salinity
Index (CRSI) were created for the 2007–2013 period. Seventy-three MODIS pixels surveyed for 0–1.2-m soil
salinity in 2013 were used as the ground-truth dataset. Our results validate the tested approach: the 2013
integral of CRSI (best performing index) had a Pearson correlation coefficient (r) of−0.699 with salinity. Results
obtained using temporally integrated data were almost always better than those obtained using individual data.
Furthermore, we show that the methodology can be improved by the use of multi-year data. Further research is
needed to improve spatial resolution and the selection of vegetation indices.

1. Introduction

1.1. Soil salinity and agriculture

Elevated levels of soluble salts (e.g., Cl−, Na+) in soils are a major
threat to irrigated and rain-fed agriculture worldwide (Ghassemi et al.,
1995; Metternicht and Zinck, 2003; Ivits et al., 2011). Even when
present in small amounts, soluble salts reduce yields for many crops.
According to the U.S. Salinity Laboratory (US Salinity Laboratory Staff,
1954), most agricultural plants cannot grow if soil salinity exceeds
16 dS m−1, where salinity is quantified as the electrical conductivity of
a saturated soil paste extract (ECe). Soils are classified as saline when
ECe > 4 dSm−1. About 23% (ca. 0.34× 109 ha) of worldwide farm-
land is estimated to be saline (ITPS: Intergovernmental Technical Panel
on Soil, 2015). Knowledge and mapping of the spatial distribution of

soil salinity is important for irrigation and drainage management, and
for setting water and environmental policies that affect the economic
sustainability of farming systems (Lambert and Southard, 1992; Letey,
2000; Welle and Mauter, 2017).

Many geological (e.g., pedogenesis), geomorphological (e.g., ele-
vation gradients), meteorological (e.g., rainfall and evapotranspiration
totals), and management (e.g., irrigation management) factors affect
the salinity levels of irrigated soils (Elnaggar and Noller, 2009;
Akramkhanov et al., 2011; Scudiero et al., 2014a; Vermeulen and Van
Niekerk, 2017). This multiplicity of contributing factors makes it ex-
tremely difficult to extrapolate local point measurements of soil salinity
to regional scales. Satellite based imagery can be used as a covariate in
salinity mapping models (Wu et al. 2014) because it captures variations
of salinity at different scales (e.g., subfield and between fields varia-
tions) (Scudiero et al., 2017).
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1.2. Remote sensing of soil salinity

1.2.1. Surface salinity versus root-zone salinity
Salinity at or near the soil surface (∼ top 0.05–0.1 m) can be readily

identified over large regions using remote sensing tools (Allbed and
Kumar, 2013). However, monitoring surface salinity is of limited in-
terest for agricultural applications. Especially in irrigated agriculture,
salinity generally accumulates deeper in the soil profile. Other than
during germination, crops are influenced by soil conditions over the
entire root zone, which can extend down to 0.5–1.2m and deeper de-
pending on the crop. For example, Lobell et al. (2007) found that in the
Colorado River Delta region, Mexico, soil salinity levels at 0.3–0.6m
had a higher impact on plant growth than salinity at 0–0.3 m. De-
termining root zone soil salinity from surface measurements is chal-
lenging: often, there is not a direct correlation between surface and
root-zone soil salinity (e.g., Zare et al., 2015).

Over large regions, indirect measures of root zone soil salinity can
be obtained through measurements of crop performance (e.g., green-
ness). Visible, near infrared, infrared, and thermal reflectance can be
used as a measure of salinity stress (Lobell et al., 2010; Wu et al., 2014;
Zhang et al., 2015; Ivushkin et al., 2017). However, other stressors
(e.g., water deficiency, pests, and nutrient deficiency) trigger similar
canopy reflectance responses (e.g., higher reflectance in the visible
range and lower in the infrared). Additionally, other factors, such as
phenological stage, also influence canopy reflectance (Solari et al.,
2008; Tagarakis and Ketterings, 2017), thus further obscuring the re-
lation between reflectance and salinity. Multi-temporal analysis of ca-
nopy reflectance can be used to isolate the effects of soil salinity from
other confounding factors (Lobell et al., 2010; Wu et al., 2014). This is
possible when average root zone salinity remains fairly stable over a
short period of time – up to 5–7 years (Lobell et al., 2007; Lobell et al.,
2010). Conversely, other stressors (e.g., mismanagement, pests) tend to
be more transient, often varying intra-annually (Scudiero et al., 2014b).

1.2.2. Detecting soil salinity with MODIS time series vegetation index data
In the last ten years, multi-temporal remote sensing data, especially

visible and near-infrared reflectance, has been used in several studies to
detect soil salinity (Lobell et al., 2007; Platonov et al., 2013; Wu et al.,
2014; Scudiero et al., 2016b, Gorji et al., 2017). One of the most no-
teworthy studies was done by Zhang et al. (2015). They used Moderate
Resolution Imaging Spectroradiometer (MODIS, The National Aero-
nautics and Space Administration – NASA, USA) time series vegetation
index (VI) data. They proposed that salinity estimates from VI time-
series could be improved by simulating the inter-annual VI variations
through a temporal interpolation procedure. By doing so, information
on crop physiology (such as seasonal integrals of VI values) can be
extracted from the time series datasets and used as explanatory vari-
ables in salinity assessment models. Zhang et al. (2015) developed their
methodology using ground data from the Yellow River Delta in the
Dongying District, China, which encompasses a mix of humid con-
tinental and humid subtropical climates with dry winters and rainy
summers, with yearly average rainfall of 600mm (Zhang et al., 2011;
Zhang et al., 2015). They reported that soil salinity correlated more
strongly with integrals of VI time series (from a single growing season)
than with VI from single dates. The VIs used by Zhang et al. (2015)
were the Normalized Difference Vegetation Index, NDVI shown in Eq.
(1) (Rouse et al., 1973):
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where R and NIR are MODIS’s red (620–670 nm) and near-infrared
(841–875 nm) bands, respectively; and the Enhanced Vegetation Index,
EVI shown in Eq. (2) (Huete et al., 2002):

= ×
−

+ × − × +

g
c R c l

EVI (NIR R)
(NIR B )1 2 (2)

where B is MODIS’s blue (459–479 nm) band and g, c1, c2, and l are
aerosol and soil correcting parameters set to 2.5, 6, 7.5, and 1 respec-
tively. They found that the one-growing-season time series integral of
EVI was more strongly correlated with soil salinity and more sensitive
to salinity changes than the integral of NDVI was.

1.2.3. Justification for this research
The research of Zhang et al. (2015) and other previously published

regional scale salinity assessment research has been carried out over
areas with fairly homogeneous meteorology (e.g., rainfall, temperature)
and geomorphology (e.g., pedogenesis). Future research efforts should
focus on creating national and global inventories of agricultural soil
salinity (Scudiero et al., 2016a). Mapping salinity at such broad scales
would entail using remote sensing over diverse geographical regions. As
a step towards that goal, the current remote sensing approaches, such
that proposed by Zhang et al. (2015), should be tested and validated
over different geographical regions of the world.

1.2.4. Research objectives
In this study, we test the MODIS VI time-series approach proposed

by Zhang et al. (2015). We evaluate the approach using a ground-truth
soil salinity dataset from the western San Joaquin Valley, California,
USA (Scudiero et al., 2014a), a region very different from the Yellow
River Delta. Besides testing the approach of Zhang et al. (2015), we also
address the following questions:

1. Should the integral value of the MODIS VI time series proposed by
Zhang et al. (2015) be preferred to a seasonal average of the VIs?

2. Should multiple-year time series of MODIS VIs data be used to map
salinity over semi-arid farmland, such as in California’s western San
Joaquin Valley, rather than single-season time series? A single year
of data might not be sufficient to isolate the effect of salinity on crop
metrics. In a given year, crop performance may be limited by other
factors besides salinity. In that case, a multi-year analysis may be
required.

3. Does MODIS EVI provide better relationships with salinity in semi-
arid farmland than NDVI, as observed for continental and sub-
tropical climates by other authors, including Zhang et al. (2015)?

4. Are there relevant scale-related limitations for the use of MODIS VIs
over areas with fairly heterogeneous cropping and land use patterns,
such as California’s western San Joaquin Valley?

2. Materials and methods

2.1. Study area

The farmland of California’s western San Joaquin Valley (WSJV,
Fig. 1a) is among the most salt-affected in California (Backlund and
Hoppes, 1984; Lambert and Southard, 1992). The WSJV has hot and
dry summers and cool winters. Annual rainfall averages around
150–200mm. For WSJV, the 2011 National Land Cover Database
classified 0.83×106ha as farmland (Fry et al., 2011). According to the
CropScape database (Han et al., 2012), 16.2% of WSJV farmland was
cropped with orchards in 2013 (e.g., Pistacia vera L., Prunus dulcisMill.).
The rest was used for herbaceous/annual (e.g., Solanum lycopersicum L.,
Triticum aestivum L.) crop production (75%), for pastureland (3.3%), or
left fallow (21.6%). During the 2011–2015 California drought
(Williams et al., 2015), the portion of fallow land increased steadily,
from 11.8% pre 2011 to 33.7% in 2015 (Scudiero et al., 2017), mostly
at the expense of herbaceous crop production (Howitt et al., 2014).
Farmers’ decisions on land fallowing were mainly driven by surface and
well-water availability and by expected revenues (Howitt et al., 2014).
Scudiero et al. (2017) reported that 55% of the farmland in WSJV
(excluding orchards – which were not included in theirs study) is
moderately to extremely affected by soil salinity.
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