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A B S T R A C T

Sound policy needs tools for production analysis under uncertainty such as the state-contingent approach. Apart
from demonstrating the potential applicability of the approach for the grain producing sector in Saxony-Anhalt,
Germany, this contribution addresses one of the key challenges to its empirical applications in the context of
agricultural production analysis under uncertainty, namely the definition of the states of nature and the con-
struction of environmental indicators to detect the occurrence of the so-defined states. This study proposes such
an environmental indicator based on biophysical crop yields and suggests two methods for statistical data
clustering to evaluate its values. To the extent to which simulated data reflect key characteristics of the real data
this contribution presents estimates for the state-contingent production technology. The hypothesis of an output-
cubical technology is rejected in contradiction to assumptions implicit to conventional production analysis under
uncertainty.

1. Introduction

Agricultural production takes place under conditions marked by
environmental and economic uncertainties. Analyzing production ac-
tivities requires appropriate tools of analysis, which themselves are
subject to constant development, improvement and testing. This study
investigates the potential usefulness of a novel tool for such an ap-
praisal, the state-contingent approach to production analysis under
uncertainty developed by Chambers and Quiggin (Chambers and
Quiggin, 2000) and described in short in Angelova (Angelova, 2017: 22
- 26). The possible state-contingency of agricultural production is re-
levant, since as Shankar observes more conventional econometric
methods for production analysis under uncertainty fail to account for
the possibility of a non-output-cubical production technology, i.e. a
technology which allows the producers to substitute potential future
agricultural outcomes against one another through input allocation
(Shankar, 2012: 23). A possible misspecification of the production risks
might result in biased estimates.

The approach seems applicable to agricultural production under
uncertainty since it described production as a process of ex ante com-
mitting inputs, for instance land, capital, labor and intermediate ex-
penditures, to achieve an agricultural outcome, which itself is depen-
dent on the occurrence of mutually exclusive states of nature or is, in

other words, state-contingent. In the context of agricultural grain pro-
duction it is easy to imagine these states of nature as a set of environ-
mental conditions, such as the presence or absence of hail, which in-
terfere with the inputs ex ante committed by farmers, for instance
already sown fields, in order to shape the crop yields at the end of the
agricultural period.

The state-contingent approach to production and decision-making
under uncertainty is fairly general. It has already been successfully
applied in multiple contexts, e.g. natural resource management
(Adamson et al., 2007), farm-level mathematical programming mod-
eling for agricultural impact assessment under environmental un-
certainty (Crean et al., 2013) and biodiversity conservation (Perry and
Shankar, 2017), applications in the already mentioned context of
agricultural production analysis under uncertainty are still numbered,
possibly due to the relative novelty of the approach and the therefore
limited time to address the empirical challenges posed by the im-
plementation of any new theory.

One of the empirical challenges in the case of the state-contingent
approach is the identification of the relevant states of nature and the
development of environmental indicators based on values exogenous to
the farmers to detect their occurrence. A study by Chavas, for instance,
approaches the production problem from a dual perspective and esti-
mates an ex ante cost function to check for the presence of an output

https://doi.org/10.1016/j.ecolind.2018.01.052
Received 21 June 2017; Received in revised form 7 October 2017; Accepted 24 January 2018

⁎ Corresponding author at: Martin Luther University at Halle-Wittenberg, Faculty of Law, Economics and Business, Große Steinstraße 73, D- 06108 Halle (Saale), Germany.
E-mail address: denitsa.angelova@ifw-kiel.de (D. Angelova).

Ecological Indicators 89 (2018) 422–437

1470-160X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2018.01.052
https://doi.org/10.1016/j.ecolind.2018.01.052
mailto:denitsa.angelova@ifw-kiel.de
https://doi.org/10.1016/j.ecolind.2018.01.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2018.01.052&domain=pdf


cubical technology and thereby surpasses the direct identification of
nature-states (Chavas, 2008). This approach, however, makes it ne-
cessary to simulate non-realized agricultural outputs in order to make
the estimation problem tractable. Another study in this context, the
investigation by Nauges, O’Donnell and Quiggin again testing for an
output cubical techology, adresses the primal problem by estimating a
state-contingent production function (Nauges et al., 2011). In this
study, the necessity to define the nature-states in the empirical sense is
exemplified, which the authors do by assuming that nature-states are
synonymous with environmental conditions ex post beneficial for the
cultivation of a specific crop. Their proposed method to detect the states
of nature relies on asking expert opinion on what would constitute
these states of nature and to subsequently evaluate data from geo-
graphically relevant weather stations.

This contribution proposes an alternative way to detect the occur-
rence of the so-defined nature-states for purposes of an estimation of a
primal state-contingent technological formulation. An environmental
indicator based on biophysical crop yield data is proposed as are two
algorithms for statistical data clustering to evaluate the values of the
indicator. In order to examplify the use of the proposed indicator a
state-contingent production function is estimated for the grain produ-
cing sector in the German Federal State of Saxony-Anhalt based on si-
mulated data. For the empirical examplification the number of states of
nature is defined exogenously and the attribution of individual ob-
servations to a state of nature is achieved through a partitioning clus-
tering algorithm. The use of a hierarchical clustering algorithm is de-
monstrated merely in order to exemplify a way to optimize the number
of states of nature to a dataset at hand.

The paper based on Angelova (2017) is structured as follows: Sec-
tion 2 presents the hierarchical and partitioning algorithms used to
evaluate the values of the indicator and to detect the occurnce of
nature-states. Section 3 describes the data, with Sections 3.1 and 3.2
describing the phenological and accounting observations respectively.
Section 4 is devoted to data simulation, which uses the accounting
observations described in Section 3.2. Section 5 introduces the pro-
posed environmental indicator for nature-state detection, evaluates the
values obtained for the indicator using the phenological observations
described in Section 3.1 and assignes the yearly accounting records to
one of the states of nature. Section 6 describes the functional form
chosen to model the production technology and the empirical specifi-
cation to be estimated. Section 7 presents the results, while Section 8
provides a discussion and concludes.

2. Methods for data clustering

Cluster analysis in general aims at grouping observations together
into groups (clusters), which are simultaneously as dense within
themselves and as heterogeneous between themselves as possible
(Härdle and Simar, 2003: 271). As Härdle and Simar also remark, the
fundamental structure of any cluster analysis involves two steps:
choosing a similarity or dissimilarity measure between the observations
in order to decide how alike or unlike two observations are and
choosing an algorithm to construct the clusters (Härdle and Simar,
2003: 271).

The difference between hierarchical and partitioning algorithms
consists in whether the cluster attribution of observations can change
during the application of the algorithm (Härdle and Simar, 2003: 277).
A reassignment of specific observations is possible with partitioning
algorithms, such as PAM, but not with hierarchical ones.

The second type of algorithm is exemplified by the method of ag-
glomerative hierarchical clustering, which allows the investigation of
potential meaningful groupings in a dataset by successively merging all

observations into a single group starting from a partition, where each
observation is in its own group. The dissimilarity (or distance) matrix
between all N observations in the dataset is therefore computed. As
Härdle and Simar remark the algorithm then proceeds in a two-step
iterative fashion (Härdle and Simar, 2003: 277):

• The most similar clusters are merged,

• The reduced distance matrix between clusters is recomputed based
on a linkage criterion.

The steps are repeated until all observations are in a single group.
The appropriate number of clusters is then determined.

The way the distance between groups is defined, the linkage cri-
terion, influences the results. A similar agglomeration result regardless
of the linkage criterion is what ultimately confirms that some truth
regarding the structure in the dataset is reflected, as Bartholomew et al.
observe (Bartholomew et al., 2002: 21).

PAM, a partitioning algorithm, allows for the attribution of N to K
groups. PAM groups observations around representative objects, or
“medoids”, so that the average dissimilarity between the observations
and the medoids is minimized. Kaufman and Rousseeuw formalize in
the following way: if X N( ) denotes the set of observations

= …x n N, 1, ,n( ) , and = …m k K, 1, ,k( ) , are the K medoids, then PAM
searches to determine:
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.
The PAM algorithm is implemented in two phases: constructing the

initial medoids, then improving the medoids, and thereby the cluster
attribution. PAM obtains reasonable clustering results in case studies
(Kaufman and Rousseeuw, 2005: 92), which analyze data structurally
similar to the data used in this study.

3. Data

State-contingent crop production analysis provides a way to
meaningfully integrate data from biophysical and economic origins –
the biophysical data can be used to construct the environmental in-
dicators subsequently used to properly evaluate the production cir-
cumstances based on the economic data. In this study, which primarily
aim at a demonstration, data from the German Federal State of Saxony-
Anhalt. The biophysical data in this study refers to crop yields gener-
ated in agronomic experiments conducted in order to obtain a bench-
mark for the crop yields typical of a well-managed enterprise in the
region. The economic data refers to accounting record averages for
enterprises selling the crop harvest, thus making heavy use of ma-
chinery, labor and intermediate inputs. The observations of both data
types used span between the years 1996 to 2007. The timeframe is
chosen since both biophysical and economic data were mostly available
for the period.

3.1. Biophysical crop yield data

The biophysical crop yields, the mean experimental crop yields,
were observed at three experimental stations in Saxony-Anhalt, whose
location is marked on Map 1 in Appendix I. The analyzed crops, winter
wheat and winter barley, were chosen due to data availability reasons.
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