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A B S T R A C T

Assessing biodiversity from field-based data is difficult for a number of practical reasons: (i) establishing the total
number of sampling units to be investigated and the sampling design (e.g. systematic, random, stratified) can be
difficult; (ii) the choice of the sampling design can affect the results; and (iii) defining the focal population of
interest can be challenging. Satellite remote sensing is one of the most cost-effective and comprehensive ap-
proaches to identify biodiversity hotspots and predict changes in species composition. This is because, in contrast
to field-based methods, it allows for complete spatial coverages of the Earth's surface under study over a short
period of time. Furthermore, satellite remote sensing provides repeated measures, thus making it possible to
study temporal changes in biodiversity. While taxonomic diversity measures have long been established, pro-
blems arising from abundance related measures have not been yet disentangled. Moreover, little has been done
to account for functional diversity besides taxonomic diversity measures. The aim of this manuscript is to
propose robust measures of remotely sensed heterogeneity to perform exploratory analysis for the detection of
hotspots of taxonomic and functional diversity of plant species.
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1. Introduction

The assessment of biodiversity for a conservation purpose is difficult
to undertake via field survey (Palmer, 1995). Species richness is the
simplest, most intuitive and most frequently used measure for char-
acterizing the diversity of an assemblage (Chiarucci et al., 2012; Chao
and Chiu, 2016). In nearly all biodiversity studies, however, the com-
pilation of complete species census and inventories often requires ex-
traordinary efforts and is an almost unattainable goal in practical ap-
plications. There are undiscovered species in almost every taxonomic
survey or species inventory (Palmer, 1995). Consequently, a simple
count of species (observed richness) in a sample underestimates the true
species richness (observed plus undetected), with the magnitude of the
negative bias possibly substantial. In addition, empirical richness
strongly depends on sampling effort and thus also depends on sample
completeness. Statistically sound sampling of biodiversity requires
several assumptions to be fulfilled in order to allow reproducibility and
credible estimation. The crucial assumption is a random sampling de-
sign, i.e. the random spatial distribution of samples based on standar-
dised statistical sampling procedures, which generally hampers rapid
sampling mainly due to logistic problems. In fact, complex ecosystems
might not be systematically surveyed or temporarily monitored by
conventional biodiversity surveys because of high costs, challenges to
access the sampling sites or the lack of historical data (Roy and Tomar,
2000).

From this point of view, remote sensing is an efficient tool allowing
to cover large areas over a short period of time, hence providing key
information on the spatio-temporal variation of biodiversity.

This is overall true (from a biodiversity conservation viewpoint),
considering the fact that recent Life Cycle Impact Assessment (LCIA)
studies acknowledged the importance of understanding the human in-
duced cause–effect mechanisms shaping the decline or improvement of
biodiversity and thus the provision of biodiversity-related ecosystem
services (Moran et al., 2016).

Recently, Souza et al. (2015) explicitly observed that landscape-
oriented approaches to evaluate biodiversity loss in a LCIA context are
still lacking (Scheiner et al., 2000; Dungan et al., 2002). Changing the
focus from individuals to communities, entire ecosystems and biomes
might represent a key concept to a correct and widely usable LCIA
model.

The aim of this paper is to propose novel approaches using remote
sensing to perform exploratory analysis for the detection of hotspots of
taxonomic and functional diversity of plant species. The complete R
code (R Core Team, 2017) used to implement all the presented algo-
rithms is available in Appendix 1.

2. Heterogeneity measurement from remote sensing and the
relationship with taxonomic diversity

According to the spectral variation hypothesis (Palmer et al., 2002)
the larger the spectral heterogeneity the higher will be the niche
availability for different organisms to survive. Hence, the higher the
spectral variability of an environment the higher might be its biodi-
versity. Such a hypothesis has been widely tested with taxonomic data
(Rocchini, 2007; Rocchini et al., 2016; Schmeller et al., 2017) and often
resulted in a positive statistical relationship although the link does not
always hold true (Schmidtlein and Fassnacht, 2017).

The variability over space is generally tested relying on a local
calculation of heterogeneity based on a moving window in a satellite
image and connecting it to human-related and ecological/geographical
drivers shaping biodiversity in the field.

For instance, spectral heterogeneity measurements, based on the
calculation of indices of variability of neighboring pixels in an image
have been recently proposed as a possible solution to support the as-
sessment of land use impacts on biodiversity (Rugani and Rocchini,
2017). Such approaches might help detecting the geographical location
of hotspots of diversity and their temporal changes in a straightforward
manner. Fig. 1 shows as an example the Rao's quadratic diversity in two
dimensions over the world, theoretically depicted by Rocchini et al.
(2017), calculated from Normalized Difference Vegetation Index
(hereafter NDVI) based on Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite data. As far as we know, this is the first
application of Rao's Q metric to satellite data covering the whole world.
The complete R code is available in Appendix 1.

Given a certain number of reflectance values in a portion of a re-
motely sensed image (usually a moving window of n × n pixels), such
metric is defined as the expected difference in reflectance values be-
tween two pixels drawn randomly with replacement from the set of
pixels:

∑ ∑= × ×Q d p pi jij (1)

where dij is the spectral distance between pixel i and j and pi is the
relative proportion of pixel i (i.e. in a window of n x n pixels pi = 1/n2).
The spectral distance dij can be calculated either for a single band or in a
multispectral system, thus allowing to consider more than one band at a
time (Rocchini et al., 2017). If Q is calculated for a single band, the
resulting value can be directly related to the variance of the reflectance
values within the considered set of pixels, a well-known metric for
summarizing the spatial complexity of remotely sensed images
(Rocchini et al., 2010). Rao's Qmetric weights the distance among pixel
values in a spectral space and their evenness. In practice, higher di-
versity in this example is related to the relative distance of NDVI
spectral values and to relative evenness in the distribution of such

Fig. 1. Rao's quadratic diversity metric applied to an NDVI map of the world (date 2016-06-06, http://land.copernicus.eu/global/products/ndvi), resampled at 2 km resolution with a
moving window of 5 pixels. As far as we know, this is the first application of Rao's Q metric to satellite data covering the whole world. The complete R code is provided in Appendix 1.
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