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A B S T R A C T

Space-time modelling has been successfully applied in numerous research projects and has been studied ex-
tensively in the field of geographical information science. However, the cyclical or seasonal variations in the
temporal dimension of most spatiotemporal processes are rarely considered along with spatiotemporal non-
stationarity. Seasonal variations are widespread and typical in marine environmental processes, and addressing
both spatiotemporal heterogeneity and seasonal variations is particularly difficult in the turbid and optically
complex coastal seas. By incorporating seasonal periodic effects into a geographically and temporally weighted
regression (GTWR) model, we proposed a geographically and cycle-temporally weighted regression (GcTWR)
model. To test its performance, modelling of chlorophyll-a, known as an important indicator of the coastal
environment, is performed using the in situ data collected from 2012 to 2016 in the coastal sea of Zhejiang
Province, China. GcTWR is compared with global ordinary least squares (OLS), geographically weighted re-
gression (GWR), cycle-temporally weighted regression (cTWR), and GTWR models. In the results, the GcTWR
model decreases absolute errors by 89.74%, 79.77%, 76.60% and 29.83% relative to the OLS, GWR, cTWR, and
GTWR models, and presents a higher R2 (0.9274) than the GWR (0.5911), cTWR (0.6465), and GTWR (0.8721)
models. The estimation results further confirm that the seasonal influences in coastal areas are much more
significant than the interannual effects, which accordingly demonstrates that extending the GTWR model to
handle both spatiotemporal heterogeneity and seasonal variations are meaningful. In addition, a novel 3D vi-
sualization method is proposed to explore the spatiotemporal heterogeneity of the estimation results.

1. Introduction

Space and time are two fundamental dimensions pertaining to all
geographic processes. Space-time analysis and modelling of geographic
parameters has long been one of the main focuses of geographical in-
formation science (GIScience). Examples include investigating the
spatiotemporal patterns of real estate prices (Fotheringham et al., 2015;
Huang et al., 2010; Lu et al., 2014; Wu et al., 2014), environmental
issues (Bai et al., 2016; Chu et al., 2015), land use (Wrenn and Sam,
2014), marine processes (Alam et al., 2016; Terry et al., 2013; Wang
et al., 2015) etc. Although the temporal dimension has been in-
corporated into spatial analysis and modelling successfully in many
research projects, cyclical or seasonal variations are rarely managed
with spatiotemporal nonstationarity in most geographic processes.

Seasonal variations in marine environmental processes are widespread
and typical, and require further exploration and researches (Dango, 2015;

Khodse et al., 2007; Niu et al., 2015). Coastal seas are the richest marine
regions in the world, and are the interfacial areas among the marine, ter-
restrial and aerial environments (Chen and Liu, 2015). Considering the key
role of phytoplankton in biogeochemical cycles, phytoplankton biomass in
terms of chlorophyll-a (Chl-a) is considered as the biological indicator of
coastal environments and the most important element in coastal ecosystems
(Paudel et al., 2016; Su and Weng, 1994). Therefore, investigating the
spatiotemporal variations of Chl-a and understanding the interactions be-
tween Chl-a and other environmental factors are of great significance to
recognize the ecological state of the coastal areas.

However, the variations of Chl-a are difficult to analyse and interpret
due to the complicated interrelationships between phytoplankton and
marine environmental factors (suspended matter, dissolved oxygen, nu-
trients, organic solute, etc.). Previous studies have established several global
regression models to predict Chl-a concentrations. Celik (2006) used a
multiple regression model to explore the relations between Chl-a and other
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water quality parameters (ammonium (NO4), nitrate (NO3) and phosphate
(PO4)). Partial least-squares regression (PLSR) was also employed to address
the optimal count of factors that were suitable for estimating Chl-a, which
was capable to account for 80% of the observed Chl-a variations (Ryan and
Ali, 2016).

The hypothesis of space-time stationarity in global models is usually
impractical since parameters tend to change across the research regions and
over time. Therefore, some local models have been put forward to capture
spatial variability in marine environmental processes (Freedman and Sen
Roy, 2012; Keith et al., 2013). For instance, geographically weighted re-
gression (GWR) model was formulated and fitted by Keith et al. (2013) to
investigate the variations in the relations between macroalgae richness and
environmental conditions over geographical regions. Furthermore, re-
searches have been conducted to integrate temporal impacts into the GWR
model to account for both spatial and temporal heterogeneities in recent
years (Crespo, 2009; Fotheringham et al., 2015; Huang et al., 2010). For
example, by extending the spatial distance to a spatiotemporal distance, a
geographically and temporally weighted regression (GTWR) model was
developed by Huang et al. (2010), which has been applied in various fields
and has achieved significant performance. In 2015, Fotheringham et al.
(2015) also proposed a new GTWR model to deal with local effects in both
space and time, which was confirmed to be effective in the modelling of
hedonic price.

However, few researches have been carried out on the quantitative
effect of marine environmental processes in coastal seas on both spatial
and temporal scales. Due to the complex optical and turbid character-
istics of coastal regions, managing spatiotemporal nonstationarity in
these areas is considerably difficult and challenging. Moreover, studies
have shown that seasonal variations are quite significant in the coastal
environment. For example, a long period of remote sensing data was
used by Chen and Liu (2015) to demonstrate the temporal variations of
Chl-a and suspended matter, which indicated significantly seasonal
changes in the China's eastern coastal zones.

Therefore, to better understand the marine environmental processes in
coastal seas, novel approaches should be put forward to deal with the
spatiotemporal nonstationarity and seasonal variations simultaneously. By
dividing temporal distance into seasonal periodic and interannual aperiodic
parts, our study extends the GTWR model of Huang et al. (2010) and
proposes a geographically and cycle-temporally weighted regression
(GcTWR) model to capture cycle-temporal variations and spatiotemporal
heterogeneity. In addition, an innovative 3D visualization method is pro-
posed for presenting the spatiotemporal variations of the estimation results.

Our article is formed as follows. In Section 2, we describe the study area
and data. The widely used GWR model is introduced in Section 3, followed
up by the process of integrating GTWR with cycle-temporal variations to
achieve the GcTWR model. The case study results and discussions of Chl-a
modelling in the coastal sea of Zhejiang, China using GcTWR are presented
in Sections 4 and 5. Furthermore, GcTWR is compared with global and
other GWR-based models for performance examination. Finally, the study
comes to an end with conclusions and summaries in Section 6.

2. Study area and data

2.1. Study area

The study area is situated in the Zhejiang coastal areas (ZCA) of the
East China Sea (ECS), which is abundant in fishery resources and is a
zone of frequent red tide events (Lou and Hu, 2014; Yang et al., 2013)
(Fig. 1). It lies within a typical subtropical monsoon climate with four
distinct seasons and is considerably affected by seasonal precipitation
flows from the Yangtze River (Qiu et al., 2015), which results in strong
seasonal variations in regional marine environmental processes. Every
year, the Yangtze River transports about 240 × 106 t of sediment into
the ECS, approximately 32% of which is stored in the ZCA and Fujian
coastal region (Liu et al., 2006). In addition to the Yangtze River,
several other rivers, including the Qiantang River, directly discharge

large quantities of freshwater with high nutrients and sediments into
the ZCA (Cong et al., 2014; He et al., 2013).

Tidal action in the ZCA is powerful and causes significant resuspension
of sediment, especially in the Hangzhou Bay, one of the strongest tidal bays
in the world. As a result, the ZCA has optically complex water and sig-
nificant seasonal variations, which makes the spatiotemporal hetero-
geneities of its marine processes quite complicated.

2.2. Dataset

In situ data used in this paper were collected by the Marine
Monitoring and Forecasting Center of Zhejiang Province (Hangzhou,
China) through survey cruises and dip samples. The study data covered
time period from 2012 to 2016 and were collected four times each year
in winter (March), spring (May), summer (July–August), and autumn
(October) with exception in 2012 and 2013. The detailed information
of the dataset is shown in Table 1.

The spatial distributions of monitoring stations were different every year
and the number has increased from 214 in 2012 to 309 in 2016. The stations
of 2016 were displayed in Fig. 1 and a total dataset of 4820 observations was
available (Table 1). The dataset provided full water quality parameters, e.g.,
suspended matter (SM), potential of hydrogen (PH), salinity (SAL), chemical
oxygen demand (COD), dissolved oxygen (DO), ammonia nitrogen (NH3),
nitrate nitrogen (NO3), nitrite nitrogen (NO2), silicate (SiO4), phosphate
(PO4), total phosphorus (TP), total carbon (TC), total nitrogen (TN), Chl-a,
etc. Moreover, it also contained geographic coordinates and monitoring date
information to enable our spatiotemporal analysis.

In the analysis process, Chl-a concentrations were used as the dependent
variable while the explanatory variables included a total of 25 variables.
Through correctional and multicollinearity analysis using SPSS 22.0
(Table 2), we found that DO, COD, TN and PO4 were the most strongly
correlated parameters with Chl-a, and had the lowest value of variance
inflation factor (VIF). In addition, DO and COD are known as important
indicators of phytoplankton respiration strength, while TN and PO4 are
fundamental nutrient substances for phytoplankton growth (Cole and
Harmon, 1981; Steingrund and Gaard, 2005). Therefore, DO, COD, TN and
PO4 were chosen as the independent variable in our experiment.

3. Geographically and cycle-temporally weighted regression
modelling

3.1. GWR model

The basis for the GWR methodology is that parameters in each point
are estimated locally ground on distance-weighted subsampling at
neighbouring locations (Brunsdon et al., 1998; Fotheringham et al.,
2002). GWR model that takes the version of the Ordinary Least Squares
(OLS) model is presented as follows:

∑= + +y β u v β u v x ε( , ) ( , )i i i k k i i ik i0 (1)

The index and coordinates of a spatial point are denoted as i and
(ui,vi) in Eq. (1). Accordingly, yi, xik, and εi represent the dependent
variable, the kth independent variable and the error term for the ith
point, respectively. β0(ui,vi) is the intercept term, and βk(ui,vi) stands for
the coefficient of kth independent variable at location i, which are
permitted to vary across space to capture spatial nonstationarity. The
estimator using matrix representation can be expressed as:

 = −β u v X W u v X X W u v y( , ) ( ( , ) ) ( , )i i
T

i i
T

i i
1 (2)

The n × n weights matrix associated with positions is represented
by W(ui,vi), with geographical weights in its leading diagonal and zeros
in its off diagonal elements. A weighting function is established using
the distance vector and a distance decay parameter such that neigh-
bouring sample observations from the spatial data sample are allocated
relatively more weight.
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