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As one of the main areas of carbon cycle and climate change studies, water and CO2 relations are of great signif-
icance for estimation of gross primary production (GPP). Various biogeochemical process-based models have
been set up to estimate the GPP based onmathematical representation of biological, physiological and ecological
processes. However, they ended up increasing the complexity and computational processing power due to the
large number of physical equations that need to be solved. Computational time becomes an important matter
in the simulation ofmultiple scenarios usingmodels for long periods of time (e.g. climate projections). Data driv-
en surrogatemodels have proven to be a useful tool for environmentalmodelling especially when ecological and
climatic co-variates are large. The advantages of Data Driven Models (DDM) are: the possibility of adding new
independent variables even if their understanding is weak, and short computational time to run. The aim is to
explore the ability of DDMs to replicate a biochemical model calculating GPP. This study evaluates the perfor-
mance of four surrogate DDMs, namely linear regression method (LRM), model tree (MT), instance-based learn-
ing (IBL) and artificial neural network (ANN). A simple empirical and semi-empirical relationship between GPP
and climatic variables are studied. Input variable selection (IVS) methods were used to decide on the most rele-
vant and potential environmental model inputs and then followed by a two-step approach which included a
model-free and amodel-based technique. Data from the highlands (páramo ecosystem) in the Ecuadorian Ande-
an Region from 12-year time-series (2000−2011) were used to evaluate themodels at various time frames and
at different altitudes. The GPP time series data for the same period were derived from an earlier study using the
biomodel BIOME-BGC (BioGeochemical Cycles),which is a comprehensive physical basedmodel used indifferent
analysis of carbon fluxes around the world. So-called IBL (nearest neighbour method) showed a great capability
to reproduce theGPPwhen datawas aggregated tomonthly time frame. The computational time used to evaluate
the time series with IBL as the selected DDM is shorter with enough accuracy for using it in multi-model runs.
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1. Introduction

There is a growing interest in the estimation of terrestrial gross pri-
mary production (GPP) of ecosystems due to their role as sources or
sinks of carbon and their contribution to the effects of climate change
(Prentice et al., 2000). The GPP is the total amount of energy produced
by the plants during photosynthesis and used for biomass production
and respiration (Gough, 2011). GPP supports human well-being since
it is the basis for food, fibre, wood production, and fuel. Additionally,
GPP is one of the largest global CO2 fluxes that controls several ecosys-
tem functions (Beer et al., 2010); e.g. land-atmosphere interactions
and carbon sequestration. Many process-oriented models have been

proposed to deal with these complex interactions; however, in some
cases, these models include a number of scientific hypotheses adopted
for a particular ecosystem thatmight endup in an erroneous generaliza-
tion when used for another ecosystem.

An attempt to estimate this difference at large grid cells was under-
taken by Minaya et al. (2015a, 2016), showing an error of 23% on aver-
age if no spatial heterogeneity is considered. The mentioned studies
have been carried out for páramos, a complex ‘hot spot’ mountain eco-
system that holds a great amount of biodiversity and unique ecological
processes, thus providing important ecosystem services in terms of hy-
drological regulation and carbon storage.

Several vegetation and ecophysiological models have attempted to
recreate the variation of GPP and evaluate the system behaviour
(Cramer et al., 2001; McGuire et al., 2001). Validations have been carried
out using carbon exchangemonitoringmeasurements and also above and
belowground biomass estimations, if available (Belgrano et al., 2001;
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Hilbert and Ostendorf, 2001; Jung et al., 2007). However, there are some
modelling issues that are difficult to resolve and which in most of the
cases have been neglected leading to high uncertainties (Moorcroft,
2006; Morales et al., 2005). These refer to carbon monitoring in a consis-
tent manner, approximations of nonexistent data, homogenization of
plant functional types, static model parameters and site descriptors un-
changed within an altitudinal gradient. On top of this, distributed pro-
cess-oriented models can be computationally expensive: they typically
have N30 parameters just to describe the vegetation processes.

In an attempt to reduce computational load during themodel use, the
use of surrogate models, i.e. simplified models (typically, data-driven) of
process models, could be an alternative (Koziel and Leifsson, 2013;
Regis and Shoemaker, 2013). However building them also requires build-
ing the process models first (with all the limitations mentioned above),
and generation of large data sets for training the surrogatemodel requires
multiplemodel runs leading to a serious computational effort aswell. This
is however done once, off-line, and multiple experiments with the
resulting surrogate model do not require much time.

Data driven models (DDM) are constructed to represent complex
interactions and allow data analysis, identification of trends and fea-
sible predictions (Belgrano et al., 2001; Hilbert and Ostendorf, 2001;
Papale and Valentini, 2003; Zhang et al., 2007). Basically a DDM is a
(non-linear) statistical model describing the relationships between
the input and output variables characterising the studied system.
DMMs depend much less on theoretical assumptions, and in this re-
gard are complementary to the process based models. DDM have
limitations: they depend on the quality of the used data set and can-
not generalise well for different conditions and use cases.

In ecological modelling numerous applications of a wide variety of
DDM techniques have been reported, showing that it is possible to rep-
resent complex relationships which are not clearly explained by physi-
cally- or biologically-based considerations. In spatial dynamics, for
instance, cellular automata and artificial neural networks have been ap-
plied for primary production (Anav et al., 2015; Belgrano et al., 2001;
Scardi, 1996), carbon dioxide uptake and other carbon fluxes (Beer et
al., 2010; Jung et al., 2011; Papale and Valentini, 2003; Xiao et al.,
2014), radar forecasting (Li et al., 2013). DDMs have been also used
for algae growth (Chen and Mynett, 2006; Li et al., 2010; Recknagel et
al., 1997; Scardi, 1996), classification of landscape types (Brown et al.,
1998; Zhang et al., 2007), distribution of vegetation (Hilbert and
Ostendorf, 2001; Linderman et al., 2004) and hydrologic modelling for
climate change scenarios (Corzo et al., 2009; Elshorbagy et al., 2010).

Looking specifically at terrestrial primary production, several studies
have compared the use of data-driven methods such as multiple regres-
sion models and artificial neural networks (ANN) for a particular time
frame (Jung et al., 2008; Papale and Valentini, 2003; Paruelo and
Tomasel, 1997; Vetter et al., 2008). However, such examples are few
and none of them have considered various time frames and a broader
comparison of several DDMs. By comparing various time frames makes
it possible to enhance the understanding of how influential the changes
of temporal resolution and the selection of the precisemeteorological var-
iables are for building of the most adequate and accurate DDM.

This study evaluates the performance of data-driven model (DDM)
techniques to discover the complex interactions between GPP and mete-
orological variables at various time frames. An existing BIOME-BGCmodel
of the páramo Antisana was used as reference biomodel. Four DDMs
where built as surrogate to simulate the GPP obtained from the biomodel,
namely: linear regression method (LRM), model tree (MT), instance-
based learning (IBL) and artificial neural network (ANN) model.

2. Material and methods

2.1. Case study

“Los Crespos - Humbolt” (LCH) basin, a small typical region in the
Ecuadorian Andes, was selected to analyze the surrogate model

capabilities to reproduce GPP. The LCH basin is located in the south-
western side of the volcano Antisana. It has an area of 15.2 km2, of
which 16% is covered by glacier, 17% by moraine and 68% with páramo
vegetation and extends from 4010 m a.s.l. (meters above sea level) to
5000 m a.s.l. (Fig. 1). Precipitation range is 800–1200 mm/yr, monthly
average temperature is 6 °C and average relative humidity is around
80%. Typical páramo vegetation covers the entire surface until the begin-
ning of themoraine, which ismainly located at elevations above 4700m
a.s.l. In previous studies (Minaya et al., 2015a; Minaya et al., 2015b),
plant species were identified and classified based on their growth
forms (Ramsay and Oxley, 1997). In the lower and middle parts of the
catchment the vegetation is dominated by tussock grasses (TU)
(Calamagrostis intermedia) and acaulescent rosettes (AR) (Werneria
nubigena, Hypochaeris sessiliflora). Near flood zones and streams there
is a strong dominance of cushions (CU) (Azorrella pedunculata)
(Minaya et al., 2015b). These growth forms had large differences in
their carbon, nitrogen concentration andmain ecophysiological charac-
teristics along altitudinal gradients (Minaya et al., 2015b). For this rea-
son, the parameters were adequately treated at three elevations (R1:
4000–4200 m a.s.l.; R2: 4200–4400 m a.s.l.; R3: 4400–4700 m a.s.l.).

2.2. Data description

Daily meteorological data were received from IRD (Institut de
recherche pour le développement, Ecuador) and INAMHI (Instituto
Nacional de Meteorología e Hidrología en Ecuador) databases. Daily
total precipitation and daily maximum and minimum temperatures
were collected from 2 stations, one in the upper and the other at the
outlet of the basin for the years 2000–2011. The short wave radiation
(SWR) and vapour pressure deficit (VPD) were calculated based on
the above mentioned parameters by using a mountain climate simula-
tor MT-CLIMB version 4.3 (Kimball et al., 1997; Running et al., 1987;
Thornton, 2000; Thornton and Running, 1999) that estimate the near
surface parameters based on nearby observations of temperature and
precipitation. The use of VPD and SWR combined with the information
of precipitation and temperature can be of certain value for the learning
processes. All parameters were interpolated for the three different ele-
vations (Table 1). There is no strong seasonality in the region, the spread
of values of temperature in each altitudinal gradient aremainly attribut-
ed to the air humidity determined by local climate (Buytaert et al.,
2006). Conversely to temperature, precipitation is highly variable in
the region and at a small scale it is associated with wind speed and di-
rection which in turn are controlled by slopes and irregular topography
(Buytaert et al., 2005; Buytaert et al., 2006).

GPP is defined as the total amount of CO2 that is fixed by the plants
through photosynthesis and it has proved to be a good indicator of
ecosystem's health, high GPP means high amount of CO2 sequestration
in the region and low values mean plant decay and organic matter de-
composition. GPP was estimated using a biogeochemical and eco-phys-
iological model BIOME-BGC (BioGeochemical Cycles), which is an
ecosystem process model that estimates fluxes and storage of energy,
water, carbon and nitrogen for soil and vegetation of terrestrial ecosys-
tems (version 4.2; Thornton, 1998; Thornton et al., 2002). BIOME-BGC is
a model capable of representing high complex ecological and biophysi-
cal process in ecosystems (White et al., 2000) and it has been successful-
ly applied to estimate water and nutrient cycling from forest to
herbaceous ecosystems (Di Vittorio et al., 2010; Hidy et al., 2012;
Running andHunt, 1993; Trusilova and Churkina, 2008). Themodel pa-
rameterizationwas done in a previous study (Minaya et al., 2015b) that
relied on statistical analysis of key parameters derived from in situmea-
surements in order to reduce significantly the uncertainty of the calcu-
lated GPP. BIOME-BGC uses daily meteorological data and general stand
soil information (Fig. 2) to simulate the energy, carbon, nitrogen and
water cycles, and requires standard meteorological data as the main
drivers for the ecosystem activity (Trusilova et al., 2009). The GPP for
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