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Climate change will promote substantial effects on the distribution of invasive species. Here, I used an ensemble
of bioclimatic envelopemodels (Gower Distance, Chebyshev Distance, andMahalanobis Distance) to forecast cli-
matically suitable areas of South America for 13 invasive African grass species under future climate conditions
(year 2050). Under current climatic conditions, the areas with the potential for the highest invasive species rich-
ness are locatedmostly in the tropical climates of South America, except for the Amazon region. In the year 2050,
the overall pattern of invasive species richness will not change considerably, and increases in northeastern Am-
azon and portions of the temperate regions of South America are predicted.
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1. Introduction

Invasive species are one significant threat to natural ecosystems
(Mack et al., 2000). On the global scale, invasive grass species are
among the most successful invasive plants (Pysek, 1998) and can
cause substantial changes in biodiversity and ecosystem function
(D'Antonio and Vitousek, 1992; Williams and Baruch, 2000).

Climate change will promote substantial effects on key components
of invasive plants (see Hellmann et al., 2008 for more details on conse-
quences of climate change for invasive species). For instance, climate
change maymodify the impact of non-native invasive species on native
species and ecosystems and facilitate the establishment and spread of
new invasive species (Bradley et al., 2010a). Therefore, the identifica-
tion of climatically suitable areas for invasive grasses under climate
change will provide valuable information to prioritize in conservation
and preventive strategies.

In recent years, bioclimatic envelope models (henceforth BEMs)
have been used to forecast climatically suitable areas under climate
change for individual invasive grass species (e.g., Bradley, 2009;
Bradley et al., 2009; Bradley et al., 2010b; Curtis and Bradley, 2015)
and multiple invasive grass species (e.g., Parker-Allie et al., 2009;
Gallagher et al., 2013). Bioclimatic envelope models are built using
modeling methods that establish correlations between the occurrence
records of species and current climatic variables (Peterson et al.,
2011). Themodel fit is then projected onto the entire study area in a fu-
ture scenario of climate change, producing amap that shows climatical-
ly suitable areas for species (Peterson et al., 2011).

In South America, many African grasses were introduced intention-
ally forage or ornamental purposes and accidentally through contami-
nated crop seeds (Williams and Baruch, 2000). Some of these grasses
escaped from cultivated areas and invaded natural ecosystems
(Williams and Baruch, 2000), causing serious ecological damage. For in-
stance, invasive grass species in natural environments of South America
have reduced native diversity (e.g., Hoffmann and Haridasan, 2008;
Almeida-Neto et al., 2010; Rossi et al., 2014) andmodified species com-
position and ecosystem processes (e.g., disturbance regimes and bio-
geochemical cycling rates; D'Antonio and Vitousek, 1992; Williams
and Baruch, 2000). Moreover, populations of invasive species are diffi-
cult to eradicate and/or control once established (Pimentel et al.,
2001) and, according to Thalmann et al. (2015), BEMs are a useful and
cost-effective tool for conservation planning and biodiversity
management.

In this study, I built an ensemble of BEMs to forecast climatically suit-
able areas of South America for invasive African grass species under fu-
ture climate conditions. I focus on 13 important invasive species (C4
species) in South America: Andropogon gayanus Kunth, Brachiaria
brizantha Hochst (Ex A. Rich), Brachiaria decumbens Stapf., Chloris
gayana Kunth, Eragrostis curvula (Nees) Schrad., Eragrostis plana Nees,
Hyparrhenia rufa (Nees) Stapf., Melinis minutiflora Beauv., Panicum
coloratum L., Panicum clandestinum L., Panicum purpureum Schum.,
Rhynchelytrum repens (Willd) C.E. Hubb and Urochloa mutica Forsk
(Williams and Baruch, 2000). As the invasive species were mostly
from tropical areas in Africa, my general expectation was an increase
in the area occupied by species toward temperate regions of South
America.
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2. Materials and methods

2.1. Species data

I compiled worldwide native and invasive presence records (latitude
and longitude coordinates) for these 13 grasses from four online data-
bases: (i) Global Biodiversity Information Facility (GBIF; http://www.
gbif.org), (ii) Instituto Hórus (http://www.institutohorus.org.br), (iii)
SpeciesLink (http://splink.cria.org.br) and (iv) Tropicos (http://www.
tropicos.org). For E. plana, I also included presence records from Barbosa
et al. (2013). I removed duplicate presence records using ENMTools ver-
sion 1.3 software (Warren et al., 2010). My final datasets comprised 692
presence records forA. gayanus, 580 for B. brizantha, 210 for B. decumbens,
1699 for C. gayana, 2584 for E. curvula, 3216 for E. plana, 986 for H. rufa,
497 for M. minutiflora, 454 for P. coloratum, 1941 for P. clandestinum,
685 for P. purpureum, 749 for R. repens and 487 for U.mutica.

2.2. Bioclimatic variables

I characterized current climate conditions using 19 current biocli-
matic variables obtained from the WorldClim database (Hijmans et al.,
2005; http://www.worldclim.org)witha spatial resolutionof 10arcmin.
I then selected six bioclimatic variables that were not collinear (pair-
wise rPearson b 0.75): (i) mean temperature diurnal range (mean of the
monthly difference between maximum and minimum temperatures),
(ii) temperature seasonality, (iii) mean temperature of the wettest
quarter, (iv) annual precipitation, (v) precipitation of the driest
month, and (vi) precipitation seasonality. These bioclimatic variables
were selected based on the basis of related studies (Parker-Allie et al.,
2009; Bradley et al., 2010b; Gallagher et al., 2013; Curtis and Bradley,
2015), excluding highly correlated variables (pair-wise rPearson b 0.75;
Braunisch et al., 2013) to reduce multicollinearity and subsequent
model over-fitting (Jiménez-Valverde et al., 2011).

In order to characterize future climate conditions, I used the same six
bioclimatic variables projected for the year 2050 from three Atmo-
sphere-Ocean Circular Models (AOGCMs: CCSM4, GISS-E2-R and
MIROC5) using the RCP45 carbon emission scenario. I used three
AOGCMs to include variation and uncertainty between mathematical
simulations (Diniz-Filho et al., 2009). I obtained future data for each
AOGCM from the WorldClim database (Hijmans et al., 2005; http://
www.worldclim.org) with a spatial resolution of 10 arc-minutes.

2.3. Bioclimatic envelope modeling and ensemble forecast

For each species, I built the BEMs using default options of three pres-
ence-only methods: Gower Distance (Carpenter et al., 1993), Chebyshev
Distance (Carpenter et al., 1993), and Mahalanobis Distance (Farber and
Kadmon, 2003). Presence-onlymethodswere chosen because absence re-
cords do not always imply a lack of climatic suitability (see Bradley, 2009
formore details). I usedworldwide distribution data (i.e., presence records
from both the native and invaded range) for each species (Broennimann
and Guisan, 2008). The current and future BEMs were fit on the global
scale and then projected onto South America to forecast areas that
would be climatically suitable for invasive grasses. The BEMs were built
using openModeller version 1.1.0 software (Souza-Muñoz et al., 2011).

To assess the predictive power of the models, I used the area under
the curve (AUC) derived from receiver operating characteristics ROC
Fielding and Bell, 1997 . AUC values range from 0 to 1, and according
to Swets (1988), an AUC above 0.8 is considered to have good discrim-
ination abilities.

My modeling procedure yielded three maps of climatic suitability per
species for current climatic conditions and nine (three modeling
methods × three AOGCMs)maps of climatic suitability per species for fu-
ture climatic conditions. In order to produce robust forecasts and reduce
the sources of uncertainty (i.e., differences between modeling methods
and AOGCMs), I applied an ensemble forecast approach (Araújo and

New, 2007) to combine the maps of climatic suitability. The final current
and future consensus map for each invasive grass was obtained by aver-
aging values of each grid cell in a map (Marmion et al. 2009).

I transformed the final current and future consensusmaps into bina-
ry suitable/non-suitablemaps using theReclassify tool in Spatial Analyst
of ArcGIS 10 (ESRI, 2010) and a threshold of 0.5 (Bertelsmeier and
Courchamp, 2014; Thalmann et al., 2015). I then built a current and fu-
ture species richness map using a simple summation of each grid cell of
the binary suitable/non-suitable maps of the invasive grass. This was
performed using the raster calculator tool in the spatial analyst capabil-
ity of ArcGIS 10 (ESRI, 2010).

2.4. Measuring sources of uncertainty

I followed the protocol proposed by Diniz-Filho et al. (2009) and
used the total sum of squares (SS) from a two-way analysis of variance
(ANOVA) without replication to quantify the relative importance of
each of the sources of uncertainty studied here (i.e., modeling methods
and AOGCMs). I carried out the ANOVA using invasive species richness
as the response variable andmodelingmethods and AOGCMs as factors.

3. Results

For all species, AUC values were within the accepted range of high-
performing models (mean AUC value 0.983 ± 0.01; see Appendix S1).
All the invasive African grasses, except H. rufa, showed losses of climat-
ically suitable areas in South America under climate scenarios (Table 1).

Under current climatic conditions, the areas with potentially highest
invasive species richness are located mostly in the tropical climates of
South America, except for the Amazon region (Fig. 1a). For the year
2050, the overall pattern of invasive species richness will not change con-
siderably (Fig. 1b). Reductions in the number of invasive species are fore-
casted to affect northern and western portions of South America, while
increases in species richness of invasive grasses are located in the north-
eastern Amazon, southern Brazil and Uruguay and central portions of Ar-
gentina (Fig. 1c).

Modeling methods were the main source of uncertainty and
accounted for 82% of the total sum of squares (SS). The interaction be-
tween AOGCMs and BEMs and the main effects of AOGCMs each
accounted for 0.8% of SS.

4. Discussion

Studies have examined sources of uncertainty to forecast climatical-
ly suitable areas under climate change. My uncertainty analysis indicat-
ed that the modeling method component is the most important source
of uncertainty, as indicated in other studies (Diniz-Filho et al., 2009;

Table 1
Percentage of climatically suitable land area in South America for 13 invasive African
grasses under current and future climate conditions.

Species name % Climatically suitable
area in South America

Δ%

Today Future

Andropogon gayanus 76.07 72.86 −3.21
Brachiaria brizantha 83.36 81.74 −1.62
Brachiaria decumbens 77.54 71.50 −6.04
Chloris gayana 86.71 77.36 −9.34
Eragrostis curvula 70.58 60.45 −10.13
Eragrostis plana 60.01 50.84 −9.17
Hyparrhenia rufa 83.69 83.90 +0,21
Melinis minutiflora 81.21 78.94 −2.27
Panicum coloratum 59.80 54.58 −5.22
Pennisetum clandestinum 84.89 69.21 −15.68
Pennisetum purpureum 85.55 84.32 −1.22
Rhynchelytrum repens 84.94 84.03 −0.91
Urochloa mutica 82.28 79.74 −2.53
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