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A B S T R A C T

Ocean acidification (OA) driven by anthropogenic CO2 emissions affects marine ecosystems, fisheries and
aquaculture. Assessing the impacts of OA using projection models facilitates the development of future scenarios
and potential solutions. Here, we explored various ways to incorporate OA impacts into a multi-stressor dynamic
bioclimatic envelope model to project biogeographic changes of ten commercially exploited invertebrate species.
We examine three dimensions of uncertainties in modelling biophysical OA effects: model structure, para-
meterization, and scenario uncertainty. Our results show that projected OA impacts are most sensitive to the
choice of structural relationship between OA and biological responses, followed by the choice of climate change
emission scenarios and parameterizations of the size of OA effects. Species generally showed negative effects to
OA but sensitivity to the various sources of uncertainty were not consistent across or within species. For ex-
ample, some species showed higher sensitivity to structural uncertainty and very low sensitivity to parameter
uncertainty, while others showed greatest sensitivity to parameter uncertainty. This variability is largely due to
geographic variability and difference in life history traits used to parameterize model simulations. Our model
highlights the variability across the sources of uncertainty and contributes to the development of integrating OA
impacts in species distribution models. We further stress the importance of defining the limitations and as-
sumptions, as well as exploring the range of uncertainties associated with modelling OA impacts.

1. Introduction

Carbon dioxide (CO2) emissions from human activities such as the
burning of fossil fuels largely contributes to the rapid rate of ocean
acidification (OA) since the industrial revolution (IPCC, 2013). OA is
the chemical process driven by elevated atmospheric CO2 that results in
reduced pH and increased acidity. Global sea surface pH has already
decreased by 0.1 units since the pre-industrial average of 8.17, a 26%
increase in acidity (Caldeira and Wickett, 2003; Feely et al., 2009;
Pörtner et al., 2014). Under our current emissions trajectory, sea sur-
face pH is projected to decrease by an additional 0.3 units by the end of
the 21st century (Ciais et al., 2013; IPCC, 2013). Some areas are ex-
periencing much larger changes in pH. For example, the Northeast
Pacific Ocean has naturally fluctuating pH levels due to upwelling, and
the uptake of anthropogenic CO2 is elevating acidification across these
areas (Feely et al., 2014; Haigh et al., 2015).

Ocean acidification is expected to impact marine organisms, com-
munities and ecosystems (Branch et al., 2013; Cooley et al., 2009;
Doney et al., 2012; Guinotte and Fabry, 2008; Haigh et al., 2015; Le

Quesne and Pinnegar, 2012; Mathis et al., 2015), with variations in
sensitivity across populations, taxonomic groups and ecosystem types
(Heuer and Grosell, 2014; Kroeker et al., 2013; Nagelkerken and
Connell, 2015). Most notably, OA compromises the ability of organisms
to efficiently build and retain calcium carbonate structures (e.g. coral
reefs, oyster and mussel shells, coccolithophore exoskeletons) due to
the under-saturation of calcium carbonate (Fabry et al., 2008; Feely
et al., 2004; Kleypas et al., 2006; Nienhuis et al., 2010; Ries et al.,
2009). Beyond calcification, OA affects a wide range of physiological
processes such as acid-base balance, basal metabolic rates, aerobic
scope, oxygen consumption, thermal tolerance, fertilization rates, and
development, among others (detailed in Le Quesne and Pinnegar,
2012). Direct impacts of OA on changes in species abundance will result
in important changes to competitive, facilitative, and trophic relation-
ships (Dutkiewicz et al., 2015; Queirós et al., 2015; Sunday et al., 2017;
Trenkel et al., 2005). Overall, changes in physiology and behaviour lead
to changes in growth and abundance, and when considered across
multiple interacting species, results in important changes in community
structure and ecosystem function (Kroeker et al., 2013; Nagelkerken
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and Connell, 2015).
OA coincides with other anthropogenic CO2 driven stressors in-

cluding ocean warming and decreases in dissolved oxygen concentra-
tion. Increases in temperature affects physiological processes such as
metabolism, increasing the demand for oxygen and reducing aerobic
scope (Pörtner and Lannig, 2009). Decreases in oxygen content further
exacerbates this effect, and is projected to lower the metabolic capacity
of marine habitats potentially leading to decreased body size (Cheung
et al., 2013a; Deutsch et al., 2015; Pauly and Cheung, 2017). Biogeo-
graphic responses to ocean warming and decreased oxygen content
have been observed as shifts in distributions to deeper and higher la-
titudinal waters (Cheung et al., 2013b; Dulvy et al., 2008; Perry et al.,
2005). While isolating the effects of OA is important for understanding
the mechanisms in which OA effects operate, integrating OA with other
stressors provides a more real-world application of the effects of an-
thropogenic-influenced global changes on species distribution and
abundance.

The inclusion of OA in assessing impacts of anthropogenic CO2

emissions is important in developing scenarios of future global change
for marine systems. Published syntheses and meta-analyses are ex-
tremely useful for providing baseline parameters for modelling and
assessing the biological impacts of OA (Kroeker et al., 2013;
Nagelkerken and Connell, 2015; Sunday et al., 2017). They also provide
a basis for linking complex physiological responses to life history traits
that have direct implications on population dynamics. For example,
Cheung et al. (2011) incorporated physiological models into a dynamic
bioclimatic envelope model (Cheung et al., 2008) to assess climate
change effects on species distribution and abundance. This model was
then applied to a socioeconomic analysis of climate change and OA
impacts in the Arctic Ocean (Lam et al., 2014). Empirical models of OA
effects have also been used to estimate changes in the growth rates of
mollusc species and thereby impacts on US mollusc fisheries (Moore,
2015; Ries et al., 2009). Another promising approach incorporates in-
formation about marine food webs by using an ecosystem model to
model the impacts of OA on functional groups that include harvested
taxa (Ainsworth et al., 2011).

Projection models provide valuable insight to potential future sce-
narios but are subject to various sources of uncertainty. Uncertainty
when modelling ocean acidification arises from the choice of model
parameterizations, which produce a range of possible impact pathways.
We define three sources of uncertainty when modelling OA impacts: 1)
structural, 2) parameter, and 3) scenario uncertainty (Hawkins and
Sutton, 2009). Structural uncertainty refers to the underlying con-
struction of the model, such as the mathematical formulation of a
model to represent ecological relationships, or the processes modelled
using correlative versus mechanistic approaches (e.g. Pauly et al.,
2000). Parameter uncertainty stems from the inherent variability and
our limited ability to accurately and precisely measure biological pro-
cesses and relationships (e.g. Kremer, 1983). Scenario uncertainty re-
sults from the different possible future pathways due to many socio-
economic factors (e.g. governmental policies, technological
development) that affect biophysical drivers. This includes the various
greenhouse gas concentration trajectories used to drive climate and
biophysical models (IPCC, 2013). The combined uncertainties produce
the full range of future trajectories, providing valuable insight to the
sensitivities of modelling OA impacts.

In this study, we explored various ways to incorporate OA impacts
into a multi-stressor dynamic bioclimatic envelope model to project
changes in the biogeography of ten commercially exploited invertebrate
species. We examined the structural, parameterization and scenario
uncertainties in modelling OA effects. To eventually improve our con-
fidence in forecasting future scenarios, we explored the variability of
model outputs and discussed the utilities and limitations of different
ways to incorporate OA impacts in spatial biogeographic models.

2. Methods

We incorporated the impacts of OA into a previously developed
dynamic bioclimatic envelope model (DBEM) (Cheung et al., 2016a,
2011, 2008) to estimate changes in species distribution and abundance.
The DBEM uses earth system models as inputs (e.g. Dunne et al., 2013)
and links species distribution models (Jones et al., 2012), advection-
diffusion movement models (Sibert et al., 1999), growth models (Pauly,
1980), physiological models (Pauly, 1981), and population dynamics
models (Hilborn and Walters, 1992; O’Connor et al., 2007; Pauly, 1980)
to predict how species will move geographically across time (annual
time step) and space (on a 0.5° latitude x 0.5° longitude grid) with
climate change. We outline the specifics of modelling the effects of OA
and how it interacts with effects from other stressors (i.e. temperature
and oxygen) below, while other details on the DBEM can be found in
the Supplementary material (Supplementary Fig. S1).

2.1. Modelling the effects of global change

Global change effects on organisms and populations include
changes in temperature, oxygen and pH. We integrated the biological
impacts of OA on exploited populations through the effects on somatic
growth and mortality rates. We define the effects on somatic growth as
a mechanistic process, and the effects on survival as a correlative pro-
cess. First, the model uses the von Bertalanffy growth function (von
Bertalanffy, 1951) to simulate changes in growth in response to ocean
warming, decreases in dissolved oxygen concentration, and ocean
acidification (Cheung et al., 2011). Growth rate (change in biomass, B,
as a function of time, t) is determined with the derived equation from a
growth function:

= −dB
dt

HW kWd b
(1)

where H and k represent the coefficients for anabolism and catabolism,
respectively. Anabolism scales with body weight (W) to the exponent
d<1, catabolism scales linearly with (W), i.e. b = 1, and their dif-
ference determines the growth rate of species biomass (B). Solving for
dB/dt = 0 when asymptotic weight (W∞) is reached, we obtained

= ∞
−H kW d(1 ). Thus, growth rate is dependent on the available oxygen

(anabolism) and oxygen demand for maintenance metabolism (cata-
bolism).

Integrating Eq. (1) into a generalized von Bertalanffy growth func-
tion:

= −∞
− − −[ ]W W e1t

K t t d( ) 1/(1 )0 (2)

where K is the von Bertalanffy growth parameter where = −K k d(1 ).
The von Bertalanffy growth parameter K represents the rate at which
maximum body size is reached. We assume d=0.7, although values
typically range from 0.5 and 0.95 across invertebrate species (Hughes,
1983; Johnson and Rees, 1988; Jones et al., 1992). Sensitivity of
maximum body size to changes in temperature and acidity show that
low values of d (< 0.7) results in slight decreases in sensitivity, while
larger values of d (> 0.7) results in major increases in sensitivity
(Supplementary Table S1) (Pauly and Cheung, 2017). Effects of mul-
tiple stressors show an antagonistic interaction for the effects on body
size. Therefore, the use of 0.7 for all species considered here are con-
servative as smaller values of d do not considerably change temperature
and acidity effects on maximum body size, while larger values of d only
increase sensitivity.

The effects of temperature were modelled to affect metabo-
lism—described in Eqs. (3) and (4)—through the H and k coefficients
following the Arhennius equation, −e j T/ , where =j E R/a , with Ea and R
equal to the activation energy and Boltzmann constant, respectively.
Furthermore, oxygen availability affects aerobic scope (i.e. oxygen
supply) while acidification affects maintenance metabolism (i.e. oxygen
demand). We modelled the impacts of decreases in oxygen and ocean
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