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A B S T R A C T

Contact networks are convenient models to investigate epidemics, with nodes and links representing potential
hosts and infection pathways, respectively. The outcomes of outbreak simulations on networks are driven both
by the underlying epidemic model, and by the networks’ structural properties, so that the same pathogen can
generate different epidemic dynamics on different networks. Here we ask whether there are general properties
that make a contact network intrinsically vulnerable to epidemics (that is, regardless of specific epidemiological
parameters). By conducting simulations on a large set of modelled networks, we show that, when a broad range
of network topologies is taken into account, the effect of specific network properties on outbreak magnitude is
stronger than that of fundamental pathogen features such as transmission rate, infection duration, and im-
munization ability. Then, by focusing on a large set of real world networks of the same type (potential contacts
between field voles, Microtus agrestis), we showed how network structure can be used to accurately assess the
relative, intrinsic vulnerability of networks towards a specific pathogen, even when those have limited topo-
logical variability. These results have profound implications for how we prevent disease outbreaks; in many real
world situations, the topology of host contact networks can be described and used to infer intrinsic vulnerability.
Such an approach can increase preparedness and inform preventive measures against emerging diseases for
which limited epidemiological information is available, enabling the identification of priority targets before an
epidemic event.

1. Introduction

Network analysis is a powerful approach for investigating epi-
demics, with nodes representing anything from individuals to countries,
and links mapping transmission routes that pathogens can exploit to
spread from one node to another (Newman, 2002; Keeling and Eames,
2005; Strona and Castellano, 2018). This general framework permits
simulating different epidemiological scenarios over the same network
(Pastor-Satorras et al., 2015), yielding disease-specific outcomes that
could be important for informing management and intervention stra-
tegies (Rushmore et al., 2013; Yamin et al., 2014; Sun et al., 2014;
Herrera et al., 2016). Although each scenario has its own characteristics
and is expected to lead to specific outcomes, those are also constrained
by network structure. Understanding to what extent such constraints
can attenuate differences between different epidemiological scenarios
may offer important insights into the ecology and dynamics of in-
fectious disease spread (Keeling, 2005).

Common models that investigate epidemics in networks are based
on identifying distinct categories (i.e., compartments) that define the

health status of a host, and a set of specific rules dictating the prob-
ability of transition from one status to another. In a typical im-
plementation of epidemic models, nodes can be in one of three different
states at any given time: susceptible to the infection, S; infected, I; and
recovered/removed from the system, R (following complete im-
munization or death). Different epidemic models are then formulated
by varying the rules that permit hosts to transition from one state to
another. For example, a very common model is the SI, where nodes can
pass only from S to I. In the SIS models, infected nodes are allowed to
roll back to the susceptible state without gaining immunity (I→ S) ac-
cording to a certain probability, which enables a disease to cycle in a
host population by re-infecting individuals that have recovered from a
previous infection. Simulating individuals gaining permanent or tem-
porary immunity requires the addition of a third compartment that sees
nodes removed from the network (I→ R), which creates more complex
models, such as the SIR and the SIRS (note that, besides immunization,
the R status may indicate the death of a node) (Pastor-Satorras et al.,
2015).

The classic compartmental epidemic models are flexible and simple,
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but moving beyond these particular formulations to establish more
general topology-vulnerability relationships has been difficult, in part
because they depict specific and distinct scenarios. As a result, the ef-
fects of network structure on disease outcomes are usually investigated
by focusing on a particular type of network and pathogen whose fea-
tures combine to determine disease dynamics (Pastor-Satorras et al.,
2015). While precise, these constraints on model formulation limit our
ability to compare dynamical outcomes across different networks con-
figurations and across different pathogen types.

In an attempt to overcome these issues, we introduce here a gen-
eralization of classic compartmental models, which we named the
‘Synthetic Network Epidemic Spread’ (SNES) model. Despite its simple
formulation, the SNES model permits the investigation of a wide range
of epidemic scenarios in a continuous and controlled way, through
tuning three parameters quantifying fundamental pathogen features:
(1) the pathogen's transmission rate, τ; (2) the duration of infection
(i.e., survival time of the pathogen in the host), ρ; and (3) the pathogen's
immunization effect on hosts over repeated infections, ι. Such para-
meters (all bounded in [0, 1]) offer a straightforward way to perform
comparisons across different epidemic scenarios.

Here we take advantage of this by applying the SNES model to a
large set of simulated networks (representative of many different real
world situations), and to a set of animal contact networks (representing
potential encounters between field voles obtained from a mark/re-
capture study, Davis et al., 2015), with the aim to investigate to what
extent network structure affects the outcome of an epidemic.

We found that, when a broad range of network topologies is taken
into account, the epidemiological parameters of the model are in many
cases less important than network structure in determining the mag-
nitude of an epidemic outbreak. Of course, when similar networks are
considered, as in the case of the field vole contact networks, epidemic
parameters (and particularly transmission rate) became fundamental to
determine epidemic magnitude. Nevertheless, even in the case of si-
milarly structured networks, topological properties still permit an ac-
curate assessment of relative network vulnerability towards a given
class of pathogens (i.e. to pathogens whose spread can be modelled
using similar epidemic parameters). These findings can help improve
preparedness when limited epidemiological information is available
and a fast response (for example in terms of prioritization) is needed, a
situation that is expected to become ever more common in the future,
due to the growing globalization, and the rapid emergence of new
diseases.

2. Materials and methods

2.1. The Synthetic Network Epidemic Spread model (SNES)

At each time step, any node i can be infected by nodes pointing
towards (or, in the case of an undirected network, connected to) it
according to a given probability τ× Si, with τ being the pathogen's
transmission rate, and Si being individual host susceptibility to the in-
fection.

Concurrently, each node recovers with probability Ri, controlled by
a parameter ρ, varying in [0, 1], and increasing with time since infec-
tion: Ri=(1− 1/(1+ t)ρ). Due to the purely theoretical nature of this
study, the choice of the Ri function is arbitrary. This formulation of Ri,
however, permits a smooth transition from situations where the prob-
ability of recovery increases very slowly with time (when ρ is close to
0), to opposite scenarios of fast recovery (when ρ is close to 1). It is
intuitive that the concept behind the SNES model allows for maximum
flexibility in the choice of Ri(t) function, making it possible to accom-
modate specific situations. Yet, to avoid adding further complexity to
our analyses (and possibly complicating the interpretation of results),
we used the above formulation in all of our epidemic simulations.

The susceptibility of a node following infection becomes Si= Si× ι,
with ι being equal for all individuals (since theoretically dependent on

the pathogen) and varying in [0, 1]. This accounts for a general prop-
erty of immunizing diseases where individuals who have been infected
and who have recovered are less likely to be re-infected, which is the
basis of vaccination (though we note there is variation with respect to
immunity which is unaccounted for in these models; e.g., waning im-
munity; Scherer and McLean, 2002). Interestingly, analogies can be
drawn for very different contexts, such as that of information spread in
social networks. The probability that a person will share a piece of
information will rapidly decrease when receiving the same piece of
information again. In the following, we will refer to this process as
‘immunization’, but it may also represent the path towards removal/
death of an individual, corresponding to real world situations where
repeated infections can be fatal. As in the case of Ri(t), Si(ι) can also be
adjusted to fit specific hypotheses.

The parameters ρ and ι combine to control disease behavior, for
instance, the extent of disease spread in terms of number of infected
nodes. These parameters also permit the model to be tuned to reflect
typical epidemiological models such as SI (when ρ=0, ι=1), SIS
(when ρ > 0, ι=1), SIR(S) (when ρ > 0 and ι≤ 1), or to explore
epidemic scenarios in a continuous and controlled way. For example,
the SNES framework makes it possible to track how epidemic outcomes
compare between the SI scenario to a typical SIS scenario (Pastor-
Satorras et al., 2015) by progressively increasing the probability that a
host will recover and become susceptible again. Additionally, the SNES
model can also be easily adapted to more specific scenarios. For ex-
ample, the addition of a simple rule controlling the lapse between the
time a node is infected and the time it becomes infectious enables the
SNES to emulate compartment models that include latency (such as the
SEIRS, which includes an ‘exposed’ class).

We note that the SNES is conceptually similar to a SIRS model were
the transition probabilities S→ I, I→ R, and R→ S are adjusted to
particular values. Nevertheless, by departing from the typical com-
partmental scheme, the formulation of SNES offers some advantages in
terms of clarity. In particular, while the different, typical compart-
mental models (and possibly a ‘tunable’ SIRS) focus on the possibility
(and probability) of a host's transition from a health status to another,
and use this constraint to identify different epidemic categories on the
basis of permitted and forbidden transitions, the SNES attempts to re-
move the boundaries between different models. Those, in fact, simply
represent different regions of an ideal, continuous three-dimensional
space defined by ρ, ι and τ.

2.2. Generation of simulated networks

We tested our model on 10,000 simulated networks. To grow each
network, we selected at random a model between four different well-
known ones (configuration model; Erdos Renyi, ER; Barabasi–Albert,
BA; and Watts–Strogatz, WS) (Strogatz, 2001). To build networks using
the configuration model (Békéssy et al., 1972), we selected a random
exponent for the power law degree distribution varying between 2 and
3. In ER networks we set the number of nodes (V) to a random integer in
[50, 500] and the number of edges to a random integer in [V, 1000]. In
BA networks, we set the number of nodes to a random integer in [500,
1000], and the number of outgoing edges generated for each node to
(V× r×0.01+1), with V being the number of nodes, and r being a
random real number in [0, 1]. In WS networks, we set the dimension of
the lattice to 1, the size of the lattice along all dimensions to a random
integer in [50, 250], the distance within two nodes are connected to a
random integer in [2, 10], and the rewiring probability to a random real
number in [0, 1]. In this way, we obtained networks with a good var-
iation in number of edges, nodes, connectance, clustering, and diameter
(Fig. 1).

2.3. Reciprocity

Instead of focusing on directed and undirected networks separately,
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