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ARTICLE INFO ABSTRACT

Marine phytoplankton primary production is an extremely important process and its estimates play a major role
not only in biological oceanography, but also in a broader context, due to its relationship with oceanic food
webs, energy fluxes, carbon cycle and Earth’s climate.

The measurement of this process is both expensive and time consuming. Therefore, indirect methods, which
can estimate phytoplankton primary production using only remotely sensed predictive information, have many
advantages. We describe the development of a depth-resolved model based on an Artificial Neural Network for
estimating global phytoplankton primary production. Furthermore, we applied two different approaches, based
on input perturbation analysis and on connection weights, to assess the relative importance of the predictive
variables. Finally, we compared the results of our depth-resolved model with a previous depth-integrated so-
lution, showing that through the depth-resolution we gained not only useful information on the vertical dis-
tribution of the estimated primary production, but also an enhanced accuracy in its depth-integrated estimates.
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1. Introduction

Phytoplankton primary production is a fundamental process due to
its intimate relationship with oceanic biotic and abiotic processes, in-
cluding biogeochemical cycles, especially the carbon one, and Earth’s
climate (Hattam et al., 2015). Furthermore, it represents the bulk of the
whole oceanic autotrophic production (Duarte and Cebrian, 1996),
which contributes roughly one-third of the global primary production.

For these reasons, the assessment of phytoplankton primary pro-
duction and the study of its variability, both from a spatial and a
temporal perspective, plays a fundamental role in marine ecological
studies, from food webs (Richardson and Schoeman, 2004) to fisheries
(Nixon, 1988; Holmlund and Hammer, 1999) and from large marine
ecosystems to a better understanding of the relationships between
fundamental and demand-derived ecosystem services (Costanza et al.,
1997; Cloern et al., 2014; Hattam et al., 2015).

As the direct measurement of this biological process is not only
difficult, but also expensive and time-consuming, the need for methods
aimed at its indirect evaluation is evident. This is especially true if the
space and/or time scale of a study is too large for direct measurements
and obviously when the main objective is a global assessment. In fact,
many models have been developed for the estimation of phytoplankton
primary production and several among them are based on an empirical

approach, i.e. they assume that primary production can be estimated as
a function of other variables (Platt and Sathyendranath, 1988; Scardi,
1996; Morin et al., 1999). Some of these models are based on predictive
variables that can be obtained from remote sensing of the ocean colour,
which is a relatively cheap source of information on a global scale,
while others combine information obtained from ocean circulation and
biogeochemistry (Aumont et al., 2003; Buitenhuis et al., 2006). These
approaches provide a way to avoid long and expensive sampling pro-
cedures, that would otherwise impose strict limits to the practical ap-
plications of primary production estimates (Clark et al., 2001; Low-
Décarie et al., 2014).

The structure of these indirect methods widely varies in complexity,
also depending on the required input variables and on the nature of the
relationships between those variables and the desired output. For ex-
ample, the empirical models proposed by Ryther and Yentsch (1957)
and Smith and Baker (1978) took into account only chlorophyll con-
centrations and irradiance, while the model developed by Behrenfeld
and Falkowski (1997) used a larger set of predictive variables, although
derived from chlorophyll concentration, temperature and photo-
synthetically active radiation (PAR).

The broad variety of these techniques and their utility in different
fields have led to various comparisons between models over the years,
especially thanks to the Primary Productivity Algorithm Round Robin
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(PPARR) (Campbell et al., 2002; Carr et al., 2006; Saba et al., 2011; Lee
et al., 2015). The PPARR has been useful in order to assess and compare
the accuracy of different models. Furthermore, comparisons have laid
the basis for substantial improvements in this field, providing a
common context in which a wide range of methods has been tested. In
this way, the main differences among models have been outlined.

Among the various models tested in the PPARR framework, only
one was based on an Artificial Neural Network (ANN), which was used
to develop a depth-integrated model for the evaluation of the phyto-
plankton primary production (Scardi, 2001). As the ANN approach to
the estimation of the primary production has shown good results in
comparisons with other models (Friedrich et al., 2009; Saba et al.,
2011; Lee et al., 2015). Moreover, if compared to other techniques
ANNS s can be easily re-calibrated as soon as new data become available.

In fact, empirical models built through this Machine Learning ap-
proach, if correctly trained, are able to reproduce the complex non-
linear relations that underpin most natural processes, and phyto-
plankton primary production is no exception. Moreover, this method
does not trade generality for simplicity, as it can involve complex cal-
culations during its development (training, in ANN jargon) (Scardi,
1996; Lek et al., 1996b; Scardi and Harding, 1999; Scardi, 2001; Olden
et al.,, 2008). While the computational burden needed to develop a
model is not light, it only requires computational resources that are no
longer a limiting factor because of advances in computing power. Once
developed, an ANN model is as fast and easy to run as most other
models.

The structure of an ANN model is not defined a priori, but it is
determined during the training procedure. In fact, other types of
methods try to describe analytically the major processes the primary
production depends on, although this can be a very difficult task,
especially if the objective is to build a model that is both general and
accurate. On the contrary, the ANN approach tries to learn the re-
lationships between the input variables and the primary production
directly from the available data. This is a benefit not to be under-
estimated while dealing with natural processes that involve complex
relationships, which in most cases are unknown or difficult to para-
meterize, especially on a global scale (Maier and Dandy, 2000).
Moreover, a model based on ANNs or other Machine Learning ap-
proaches can be easily updated without rebuilding it from scratch. In
fact, if a new data set becomes available at a later stage relative to the
development of an ANN model, it can be easily exploited simply by
performing a new training procedure for the ANN, without having to
reinterpret the relationship between the variables given the empirical
nature of the approach.

The advantage in using an ANN as a tool for ecological modelling
becomes more evident if both the heterogeneity of remote sensing in-
formation and the incomplete understanding of the causal relationships
between the variables of interest are taken into account. In fact, this
methodology does not need any a priori knowledge in order to exploit
the information contained in the input variables and, at the same time,
it is robust enough with respect to a few redundant inputs, if any. These
properties allow the use of a wide range of predictive variables with no
need for a priori knowledge about the nature of the relationship with
the output of the model, i.e. with primary production, thus enhancing
the potential value of any data source, including remotely sensed data.

Indeed, the possibility to explore a wider range of information
looking for potential input variables is a major advantage in ecological
modelling, especially in the light of the lack of large data set and of the
difficulties in obtaining some of the desired measures from which an
ANN model can learn. In fact, primary production data sets are often
incomplete especially in terms of spatial coverage. Some regions of the
world are over-represented while others are under-represented or, even
worse, not represented at all. These issues may affect the model cap-
ability of generalisation and thus interfere with the modelling accuracy
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on a broad spatial scale (Lek et al., 1996b; Maier and Dandy, 2000;
Recknagel, 2001). In this context it is important to note that the per-
formance of any kind of model is highly dependent on both the quality
and the amount of available data. However, this is especially true for
Machine Learning approaches, in which the data drive the training
procedure without any explicit mathematical formulation between the
predictive variables and the targets.

As the phytoplankton primary production estimates are useful in
several research fields, such as the management of fishery resources
(Nixon, 1988, 1992; Conti and Scardi, 2010), the assessment of the
ocean oxygen production (Reuer et al., 2007), the study of climate
change influences on the oceanic primary production (Behrenfeld et al.,
2006) and both the understanding and the evaluation of various eco-
system services (Cloern et al., 2014; Hattam et al., 2015; Holmlund and
Hammer, 1999; Richardson and Schoeman, 2004; Melaku Canu et al.,
2015), any improvement in the accuracy of these appraisals could be a
very important achievement. ANNs have proved to be valuable tools,
providing good results with respect to the modelling of biological
processes and they are widely open to experimentation and optimiza-
tion in data preprocessing and in model fine-tuning (Scardi, 1996; Lek
et al., 1996b; Maier and Dandy, 2000; Olden et al., 2008).

In this framework, our main goal was the development of a model
which could use the available information more efficiently to improve
both the accuracy and the granularity of the primary production esti-
mates. We decided to opt for a depth-resolved solution using an em-
pirical approach based on an ANN with the aim to describe not only the
vertically integrated magnitude of the phytoplankton production but
also its distribution along the water column. We also decided to rely
upon surface data only as predictive information, thus assuring the
widest applicability of the resulting model.

In fact, although a depth-resolved approach to the primary pro-
duction evaluation using an ANN was already presented by Scardi
(2003), that model was strictly local and mainly aimed at demon-
strating the potential of the method. Therefore, it was developed and
tested on a rather limited data set, thus embedding a small amount of
heterogeneity and a limited set of structures of the primary production
profiles. On the contrary, a much wider variability in vertical produc-
tion profiles is one of the most challenging elements for the global
phytoplankton primary production models.

The results of the depth-resolved model we present here were
compared to those of the depth-integrated ANN model developed by
Scardi (2001). The two models share the same computational method
and the same spatial scale, while the data set upon which they were
trained coincide almost completely. Therefore, their comparison can
show if an enhancement in the accuracy of primary production esti-
mates can be achieved through a depth-resolved approach and appro-
priate data management and preprocessing.

2. Materials and methods
2.1. Data preprocessing and partitioning

The data set used in this study includes 3304 vertical profiles of
phytoplankton primary production that were acquired during oceano-
graphic cruises carried out from 1954 to 1994, which have been ob-
tained from http://www.science.oregonstate.edu/ocean.productivity/
field.data.c14.online.php. The bulk of the sampling stations was located
in three regions. The first one, and the most represented, corresponds to
the North-Western Atlantic, off the coast of the United States, while the
second one is situated in the Eastern Equatorial Pacific, off the Western
coast of South America and the last one is off the West coast of the
United States. The remaining part of the world oceans hosts only a few
sparse stations, but their scarcity makes the information obtained from
them even more relevant.
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