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A B S T R A C T

Process-based ecosystem models are increasingly used to estimate the carbon and water exchanges between
ecosystems and the atmosphere. These models inevitably suffer from deficiencies and uncertainties, which
should be thoroughly examined to better understand the processes governing the ecosystem dynamics. In this
paper, we systematically explored the uncertainties in model predictions of Changbaishan (CBS) broad-leaved
Korean pine mixed forest using the SImplified PhotosyNthesis and Evapo-Transpiration (SIPNET) model and
eddy flux and meteorological data from 2004 to 2009. We first screened out 21 key parameters from 42 model
parameters using Morris global sensitivity analysis method, and then estimated their probability distributions
through Markov Chain Monte Carlo technique. Two optimization set-ups, i.e. using observed net ecosystem
exchange of CO2 (NEE) only and using observed NEE and evapotranspiration (ET) simultaneously, were con-
ducted to detect the different constraints of different observations on model parameters. Four parameters were
well constrained using observed NEE only, including photosynthesis and respiration related parameters. While
seven parameters were well constrained using measured NEE and ET simultaneously, four of which were water
related parameters. Obviously, more information can be derived from the simultaneous optimization, since there
was additional process information in water flux observation. The modeled ET of the NEE and ET optimization
set-up had a much better fit to measured values than the NEE only optimization set-up (R2=0.70 vs. R2=0.30),
although the modeled NEE from the two set-ups had a good fit to the observations (R2=0.85 vs. R2=0.83).
This implied that assimilating carbon and water fluxes simultaneously can improve the parameterization and
overall performance of the model. Then, we quantified the uncertainties in model predictions using Monte Carlo
simulation, and trace them to specific parameter and parameter interactions through Sobol’ variance decom-
position method. The uncertainties of five outputs of interest in CBS site, NEE, gross primary productivity (GPP),
ecosystem respiration (RE), ET and transpiration (T), were 50.82%, 22.35%, 21.25%, 9.98% and 19.54%, re-
spectively. The uncertainty in predicted NEE was much larger since NEE is a small difference between two large
fluxes, i.e. GPP and RE. The maximum net CO2 assimilation rate (Amax) and carbon content of leaves (SLW) were
classified as highly sensitive parameters for all outputs of interest in CBS site, contributing more than 70% of the
uncertainties in all outputs except NEE. The importance of these two parameters holds for one subtropical
evergreen coniferous plantation and one subtropical evergreen broad-leaved forest, too. Therefore, these two
parameters and their underlying processes should be a focus of future model research, plant trait data collection
and field measurement, at least for the sites in this study. This can help connect the model simulation research
and field data collection, making them mutually informative.

1. Introduction

Forest ecosystems, functioning as a significant carbon sink, play an

important role in the global terrestrial carbon cycle (Dixon et al., 1994;
Fang et al., 2001; Pan et al., 2011). In the context of a changing climate,
understanding the exchanges of mass and energy between forests and
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atmosphere is of paramount importance since the response of the ter-
restrial biosphere is still one of the largest sources of uncertainty in
future climate projections (Ballantyne et al., 2017; Bonan, 2008; Dietze
et al., 2013; Friedlingstein et al., 2014; Heimann and Reichstein, 2008;
Sitch et al., 2008). With the rapid development of eddy flux networks,
remote sensing techniques, and other observing systems, large amounts
of data have been collected, covering different spatial and temporal
scales (Raupach et al., 2005; Scholze et al., 2017). However, no one
data source incorporates all the information about the underlying
ecosystem processes (Dietze et al., 2013).

The great need for understanding the ecosystem processes con-
tributed to the evolution of process-based ecosystem models, which are
increasingly used to estimate the carbon and water fluxes of ecosystems
(Aber and Federer, 1992; Bonan et al., 2002; Dufrene et al., 2005;
Pappas et al., 2013; Sellers et al., 1986). However, different models
have different degrees of complexity and abstraction, inherently un-
certain in the case of model structure (Friedlingstein et al., 2014; Lin
et al., 2011; Updegraff et al., 2010). In addition, uncertainty also stems
from imprecisely known model parameters and driving variables.
However, the observations of model parameters are greatly lacking or
not available, or contain errors (Lin et al., 2011; Medlyn et al., 2005).
Parameter uncertainty is usually a dominant source of uncertainty since
process-based ecosystem models are complex and contain many para-
meters (Dietze et al., 2013).

The uncertainties in simulated carbon and water fluxes have been
acknowledged being as important as the predicted values themselves
(Larocque et al., 2008). In order to reduce these uncertainties, the first
step would be to quantify them and determine the contribution of each
model parameter, thereby helping us better understand which error
source should get priority and be constrained in the future. There have
been large quantities of literature to quantify model uncertainty, but
the studies that systematically quantify the uncertainties in model
outputs and trace to specific parameters and their interactions are re-
latively few (Dietze et al., 2013; Larocque et al., 2008; Lin et al., 2011;
MacBean et al., 2016; Ren et al., 2013a; Smith and Heath, 2001). Monte
Carlo (MC) method was applied most often to quantify the output un-
certainty, and it can also rank parameters for uncertainty contribution
when combined with multiple linear regressions (Larocque et al., 2008;
Verbeeck et al., 2006; Zhang et al., 2012). One limitation of MC method
is that it cannot quantify the uncertainty contributions of model para-
meter interactions. While Sobol’ variance decomposition method can
apportion the total output variance to components that stem from each
parameter and the interactions between them (Pianosi et al., 2017;
Saltelli, 2002; Sobol, 1993; Tarantola et al., 2006; Safta et al., 2015).

The combination of MC and Sobol’ methods will effectively ac-
complish the uncertainty quantification and partitioning of the model
predictions. However, the bottleneck in implementation is the specifi-
cation of uncertainty of model parameters, expressed as probability
density functions (PDFs), where information are limited (Dietze et al.,
2013; Keenan et al., 2013; Larocque et al., 2008; Radtke et al., 2001).
Model-data fusion technique (MDF), which combines the prior in-
formation about parameters and observations such as carbon and water
fluxes, provides a way to directly inform the model and derive posterior
probability distributions of model parameters (MacBean et al., 2016;
Raupach et al., 2005; Ricciuto et al., 2011; Williams et al., 2005; Zobitz
et al., 2011). Since process-based models have large number of para-
meters, it would be helpful to identify key parameters controlling
model behavior through parameter screening using sensitivity analysis
approach at first (Quillet et al., 2013; Tang et al., 2007a).

We have proposed a methodological framework for systematic un-
certainty analysis of process-based ecosystem models in a previous
paper, combining the aforementioned four procedures, i.e. sensitivity
analysis method (one-at-a-time, OAT), MDF technique (Markov Chain
Monte Carlo, MCMC), MC uncertainty quantification method and Sobol’
variance decomposition technique (Ren et al., 2013a). The framework
provides a paradigm for systematic and quantitative uncertainty

analysis of ecosystem models and has been successfully applied in a
subtropical coniferous plantation of China (Ren et al., 2013a). How-
ever, it has not been tested and employed in other types of ecosystems,
and still has several limitations needing further research. One of the
limitations is that the OAT method is a local sensitivity analysis
method, which is very sensitive to the initial values of model para-
meters. In this research, we replace the OAT method with Morris global
sensitivity analysis technique, which is more appropriate when the
model is non-linear and non-monotonic, to overcome this limitation,
and then use the improved framework to conduct systematic un-
certainty analysis with a simple process-based model for a broad-leaved
Korean pine mixed forest.

The overall objectives of this paper are threefold: (1) determine the
key model parameters of the simplified photosynthesis and evapo-
transpiration (SIPNET) model in Changbaishan (CBS) broad-leaved
Korean pine mixed forest in China through Morris global sensitivity
analysis; (2) perform two optimization set-ups, i.e. carbon flux only,
and both carbon and water fluxes assimilated, to compare the estimated
posterior distributions of key parameters and the informed model per-
formance; (3) quantify the uncertainty in predicted carbon and water
fluxes based on the better informed model, and determine how much
each key parameter and their interactions contribute to the prediction
uncertainty, thereby helping identify future research priorities, at least
for this specific site.

2. Material and methods

2.1. Study site and observational data

The Changbaishan forest site (CBS, 42°24′N, 128°05′E, 738m) of
ChinaFLUX is a broad-leaved Korean pine mixed forest located in Jilin
province, which is the dominant vegetation type of northeastern China
(Yu et al., 2006; Zhang et al., 2006b). The forest has a temperate
continental climate controlled by monsoon (Zhang et al., 2012). The
annual mean temperature is 3.6 °C, and annual precipitation is 695mm
(Guan et al., 2005). The forest is dominated by Korean pine (Pinus
koriaensis), Tuan linden (Tilia amurensis), Mono Maple (Acer mimo),
Manchurian ash (Fraxinus mandshurica), Mongolian oak (Quercus
monogolica), elm (Ulmus glabra), with an average forest age of more
than 200-year-old and average canopy height of about 26m (Guan
et al., 2005; Zhang et al., 2006b). There is 40% coverage of understory
consisting of multi-species broad-leaved shrub, and the soil is dark
brown forest soil (Zhang et al., 2006a).

The data used in this paper is half-hourly meteorological and eddy
covariance flux data of CBS site from January 2004 to December 2009.
The data of the first three years are applied to inform the model, i.e.
estimate the posterior probability distributions of model parameters,
and the remaining three years are used to validate the informed model.
The data of the year 2004 are selected to perform the parameter sen-
sitivity analysis and uncertainty analysis of model predictions. The
specific data employed are air temperature, soil temperature, pre-
cipitation, photosynthetic active radiation (PAR), water vapor pressure,
wind speed, net ecosystem exchange of CO2 (NEE), evapotranspiration
(ET), gross primary productivity (GPP) and ecosystem respiration (RE).
The ChinaFLUX data processing system (Li et al., 2008; Liu et al., 2009,
2012) was used to conduct quality control, gap-filling and separation of
the flux data. The gaps in carbon flux data were filled using the non-
linear regression method (Michaelis-Menten and Lloyd&Tayor equa-
tions), and the separation was conducted in the meantime. The latent
heat flux was gap-filled using look-up table method, and divided by the
product of the Latent Heat of Vaporization and the water density to
derive ET.

Because the model is run at half-daily time step (day and night), we
aggregated the half-hourly meteorological and flux data to half-daily
scale. The length of each day or night time step is calculated based on
the determination of sunrise and sunset times using the latitude of CBS
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