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A B S T R A C T

Understanding the processes and consequences of habitat fragmentation is highly relevant since it represents a
serious threat to biodiversity. However, fragmentation includes several facets that are difficult to dissect, such as
loss of habitat connectivity, edge effects, and habitat loss. In this study, we analyze by mathematical and
computational means a single isolated component of habitat fragmentation: the loss of connectivity. The main
novelty of our approach is that we consider the entire temporal process by which a continuous habitat gets
progressively divided into two isolated patches. For this purpose, we present a new mathematical model. Our
results indicate that, in line with empirical evidence, connectivity loss derived from habitat fragmentation could
lead to either a decrease or an increase in total population abundance during the process. We give some con-
ditions under which the mentioned effects should occur. We conclude that connectivity loss could exert strong
influences on non-equilibrium populations.

1. Introduction

Biodiversity is being currently depleted at unprecedented rates
(Cardinale et al., 2012; Butchart et al., 2010). One of the main causes of
such crisis is the fragmentation of habitat (Wu, 2013), that consists of
the division of a continuous habitat into smaller isolated pieces of ha-
bitat immersed into a matrix of human-disturbed land. Fragmentation
accounts for up to 75% biodiversity loss, concurrent with a severe de-
pletion of ecosystem services (Haddad et al., 2015).

Habitat fragmentation is not a simple phenomenon. At least, there
are three main sources of disturbance generated by such a process: (1)
loss of connectivity, (2) habitat loss, and (3) edge effect. Connectivity
loss (or fragmentation per se Fahrig, 2003) is understood as a process in
which a single, large patch is subjected to one or several divisions
within it that leads to the formation of several smaller disconnected
patches. The geographical isolation of the remaining habitat impedes
that certain species migrate between patches. Habitat loss results from
the replacement of original, suitable habitat into matrix, hostile to most
native species, in which the fragments get immersed. Total area,
summed over all patches, get smaller than original area. Edge effect
results from increasing the length of border as a consequence of habitat
division. Borders constitute the contact zone with the matrix, and sur-
vival of species often decrease there because of an increased occupation

of the matrix and because of increased antagonistic species interactions
with natural enemies. The relative contribution of each of the compo-
nent factor to the total adverse effect reported for the fragmentation
complex remains controversial. However, available evidence suggests
that edge effect and habitat loss exert the largest effects and that the
consequences of connectivity loss could be of minimal impact, and in-
deed could also enhance population abundance (Fahrig, 2003).

As stressed in Fahrig (2003), our understanding of the population
consequences of habitat fragmentation has been hampered by the lack
of distinction between the components of the fragmentation process.
Besides this, most previous analytical studies have studied habitat
fragmentation through comparing two static states: continuous versus
fragmented habitat, and have not dealt with this phenomenon as a
genuine process. In the course of this process, connectivity loss pro-
gressively limits species dispersal, shaping population dynamics prior to
complete isolation of remnant patches (see Fig. 1).

In this study we isolate a single factor within the fragmentation
phenomenon: habitat connectivity loss, to analyze its consequences on
single-species population dynamics. Moreover, and unlike previous
work, we address the continuous nature of the fragmentation process.
For this, we present and analyze mathematically a single-species po-
pulation dynamics model that covers the whole succession of system
states (from a to c in Fig. 1), in contrast to prior models that usually
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compare states a versus state c only, disregarding the population dy-
namics driven by the processes occurring during fragmentation. Our aim
is to understand under which circumstances if any, connectivity loss by
itself drives either transient or long-term changes in population abun-
dances.

The rest of this paper is organized as follows: In the next section, we
present our model step by step, ending with the general equations
which represent the rates of changes in abundance when a population is
being subjected to a loss of connectivity between two subregions. Then,
we present the main results of a mathematical analysis of our model.
Next, we show numerical results to show the model behavior in a po-
pulation simultaneously subjected to habitat fragmentation and an in-
dependent periodic perturbation. We end this paper with a discussion of
our results.

2. The model

We will assume a deterministic and continuous-time dynamics. If
the population is located in a habitat represented by a set tΩ( ) of the
space at time ≥t 0 whose measure (e.g. area) is given by m (·), and the
population abundance is denoted by x t( ), then the population growth
rate is governed by the differential equation

′ =x t x t r D( ) ( ) [ ],tΩ( ) (1)

where r [·] is the time-varying per capita growth rate as a function of
population density D tΩ( ), given by the population abundance per unit
area, i.e., =D x t m t( )/ (Ω( ))tΩ( ) . There is sufficient evidence of density-
dependent negative feedback (see Hixon et al., 2002; Sinclair, 1989;
Tanner, 1966), so that we will assume r [·] being a decreasing function.

If A t( ) is a subset of tΩ( ) and =B t t A t( ) Ω( )\ ( ) is its complement,
then the total population abundance is equal to the sum of the abun-
dances in each subset, that is, +x xA t B t( ) ( ). This equality expressed in
terms of the growth rates is

′ = ′ + ′ = +x x x x r D x r D[ ] [ ].A t B t A t A t B t B t( ) ( ) ( ) ( ) ( ) ( ) (2)

If DA (·) and DB (·) are assumed to be equal to DΩ(·), then eqn. (2) reduces
to eqn. (1).

On a time interval T[0, ], >T 0, let us assume that a population is
being subjected to the process of fragmentation during a subinterval
t t[ , ]i f , < < <t t T0 i f . This population is located in a habitat re-
presented in mathematical terms by a region (an open, connected,
bounded and non-empty set) Ω of ℝ2. To represent the division of a
continuous habitat into two isolated patches by the development of a

discontinuity, we assume that Ω is the union of three disjoint sets: two
regions A and B, and a common frontier ⊂ ∂ ∩ ∂A BΓ (sign ∂ indicates
the boundary of), which is an arcwise connected set. Moreover, we
assume that Γ is the graph of a regular and simple curve →α t t: ( , ) Ωi f
such that +α t( )i and −α t( )f exist in ℝ \Ω2 .

Writing = ∈t α s s t tΓ( ) { ( ): ( , )}i with ∈t t t( , )i f , we have that, at any
moment t of the process, the habitat is represented by the set

=t tΩ( ) Ω\Γ( ). Note that we have a continuous habitat, i.e., =tΩ( ) Ω for
≤t ti because =+t ϕΓ( )i , and a fragmented habitat, i.e., = ∪t A BΩ( ) for
≥t tf because =−tΓ( ) Γf . Then, at ≤t ti the population is in a unique

patch Ω, but after the final instant, ≥t tf , the population is distributed
over two isolated patches A and B, see Fig. 1. Note that the loss of
habitat at time ∈t t t( , )i f is tΓ( ), a set of measure (area) zero. Therefore,
our model considers only the loss of connectivity without habitat loss
and without decreased habitat quality (e.g. expressed as edge effect).

Our interest is to develop a unified model equation for the popu-
lation dynamics before, during, and after the fragmentation process,
which constitute the main novelty of this modeling exercise. Now we
present equations for each of the major phases involved in the frag-
mentation process, and then the general model for the entire process.

Continuous habitat ( ≤ ≤t t0 i): In this time interval, the sub-
regions A and B are only a conceptual division of Ω and are fully
connected, see Fig. 1a. If we assume that areas of measure zero never
contain any individuals, then the total population growth rate is

+ ′ = + ∈x x x x r D t t( ) ( ) [ ], [0, ],A B A B iΩ (3)

which is another form of Eq. (1).
Fragmented habitat ( ≤ ≤t t Tf ): In this time interval, the zones A

and B are physically divided by Γ and isolated from each other to the
migration of population members. So, they form two disjoint patches,
see Fig. 1c. Nevertheless, there has been no loss of habitat in the process
because =m (Γ) 0. Then we have two decoupled ordinary differential
equations governing the growth, one for each patch. That is,

⎧
⎨⎩

′ =
′ =

∈
x x r D
x x r D

t t T
[ ],
[ ],

[ , ].A A A

B B B
f

(4)

Transitional phase ( < <t t t )i f : To model the population growth rate
during the whole process of habitat fragmentation (see Fig. 1b), we
present the following differential system:

⎧
⎨⎩

′ =
′ =

∈∪

∪

x x r D
x x r D

t t t
[ ]
[ ]

( , ),A A A B t

B B A t B
i f

( )

( ) (5)

where ∪A B t( ) (and ∪A t B( ) ) is an extension of the zone A (and B) in
a subset B t( ) of B (and A t( ) of A). To calculate the population density
at A, B t( ) represents the area of influence of the demographic type of B
at the instant t . The same for B t( ) respect to A. Note that A (·) and B (·)
are functions from T[0, ] to the set of parts of A and B respectively, such
that ⊂A t A t( ) ( )2 1 (and ⊂B t B t( ) ( )2 1 ) if ≤ ≤ ≤t t t ti f1 2 . In addition, we
have =A t A( ) and =B t B( ) for ∈t t[0, ]i , and = =A t B t ϕ( ) ( ) for
∈t t T[ , ]f . In this way, the system (5), with ∈t T[0, ] becomes a gen-

eralization of the whole fragmentation process modeled by (3)–(5).

2.1. On the per capita growth rate

The per capita growth rate ∞ → − ∞ ∞r: [0, ) ( , ), as a function of
the population density, assuming no migration rates, is the difference
between per capita birth rate b and per capita death rate d, where

∞ → ∞b d, : [0, ) [0, ) are assumed to be analytic on their whole do-
main. Developing b [·] and d [·] in Maclaurin series, we obtain

∑ ∑= + + = + +
≥ ≥

b D b b D b
k

D d D d d D d
k

D[ ]
!

and [ ]
!

,
k

k k

k

k k
0 1

2
0 1

2

(6)

where bi and di, ∈i {0, 1}, are positive numbers and >b d0 0. We assume
also that b [·] is strictly decreasing and d [·] is strictly increasing, so that

Fig. 1. Three snapshots of the fragmentation process through time, occurring on the
habitat Ω: (a) state of the habitat before the beginning of the fragmentation process, tΩ( )
composed of subregions A, B and a shared border Γ; (b) state of Ω in a time just after the
initiation of the fragmentation process, where Γ has lost a part tΓ( ) of border, and (c)
habitat state after the fragmentation process was finished, where tΩ( ) is the union of
disjoint fragments A and B, and the shared border Γ has disappeared.
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