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A B S T R A C T

Monitoring animal populations is central to wildlife and fisheries management, and the use of N-mixture models
toward these efforts has markedly increased in recent years. Nevertheless, relatively little work has evaluated
estimator performance when basic assumptions are violated. Moreover, diagnostics to identify when bias in
parameter estimates from N-mixture models is likely is largely unexplored. We simulated count data sets using
837 combinations of detection probability, number of sample units, number of survey occasions, and type and
extent of heterogeneity in abundance or detectability. We fit Poisson N-mixture models to these data, quantified
the bias associated with each combination, and evaluated if the parametric bootstrap goodness-of-fit (GOF) test
can be used to indicate bias in parameter estimates. We also explored if assumption violations can be diagnosed
prior to fitting N-mixture models. In doing so, we propose a new model diagnostic, which we term the quasi-
coefficient of variation (QCV). N-mixture models performed well when assumptions were met and detection
probabilities were moderate (i.e., ≥0.3), and the performance of the estimator improved with increasing survey
occasions and sample units. However, the magnitude of bias in estimated mean abundance with even slight
amounts of unmodeled heterogeneity was substantial. The parametric bootstrap GOF test did not perform well as
a diagnostic for bias in parameter estimates when detectability and sample sizes were low. The results indicate
the QCV is useful to diagnose potential bias and that potential bias associated with unidirectional trends in
abundance or detectability can be diagnosed using Poisson regression. This study represents the most thorough
assessment to date of assumption violations and diagnostics when fitting N-mixture models using the most
commonly implemented error distribution. Unbiased estimates of population state variables are needed to
properly inform management decision making. Therefore, we also discuss alternative approaches to yield un-
biased estimates of population state variables using similar data types, and we stress that there is no substitute
for an effective sample design that is grounded upon well-defined management objectives.

1. Introduction

Abundance is a population state variable of considerable interest to
wildlife and fisheries managers, as it is frequently used to inform state-
dependent decision making (Williams et al., 2002). Accordingly, nat-
ural resource monitoring programs often concentrate on tracking the
distribution and abundance of populations within and among land-
scapes. Yet a census is rarely, if ever, executed afield because at least a
portion of a population inevitably remain undetected, particularly
when monitoring rare or elusive species (Thompson, 2004). Hence,
monitoring data need to be corrected for incomplete detection to
properly inform management decision making.

N-mixture models represent a class of hierarchical models that are
increasingly used to correct monitoring count data by explicitly mod-
eling population-level processes along with the underlying detection
process (Royle, 2004a). This approach models the number of in-
dividuals counted (C) at sample unit i during survey occasion t as bi-
nomial random variables, ∼C N pBinomial( , )it i , where Ni is abundance
at sample unit i and p is detection probability (i.e., the probability of
detecting an individual in the population given it is available for de-
tection). By treating abundance as an independent random variable
generated from a statistical distribution (i.e., Poisson, negative bino-
mial, zero-inflated Poisson, etc.), the model is able to estimate detection
probability. Perhaps the primary appeal of this approach over
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alternative abundance estimation techniques, such as capture-recapture
models, is that N-mixture models only require relatively inexpensive,
convenient to collect, and less invasive spatially and temporally re-
plicated count data of unmarked individuals. Also, explanatory vari-
ables that may influence abundance and detection probability can be
included using generalized linear models (GLMs). Extensions to the
original parameterization continue to be developed, increasing the
overall flexibility and usefulness of this approach (reviewed in Dénes
et al., 2015).

Like all estimators, N-mixture models require a set of assumptions
that should be considered prior to fitting the model. Specifically, these
models assume population closure (i.e., no immigration, emigration,
births, or deaths) across replicate survey occasions within a primary
occasion (i.e., within a sampling season), individuals are not double
counted during a single survey occasion, individuals are detected in-
dependently from each other, individual heterogeneity in detection
probability is negligible, and the data match the distributional as-
sumptions of the model. New developments have enabled managers to
relax and at times even overcome some of these basic assumptions. Still,
it is evident that N-mixture models yield imprecise estimates with small
sample sizes and unstable estimates when detection probabilities are
low (Royle, 2004a; McIntyre et al., 2012; Couturier et al., 2013;
Yamaura, 2013; Veech et al., 2016; Barker et al., 2017) or when het-
erogeneity in abundance or detection probability is not modeled (Kéry
and Royle, 2016; Veech et al., 2016 – but see Kéry, 2017).

Diagnostics to identify when parameter estimates from N-mixture
models are likely to be biased are largely unexplored. In practice, po-
tential sample size issues can be avoided by monitoring a greater
number of sample units or increasing the number of primary occasions
(e.g., Yamaura et al., 2011). Furthermore, sample size requirements can
be evaluated via data simulation. Nonetheless, diagnosing potential
problems associated with low detectability and unmodeled hetero-
geneity in model parameters is much more difficult. A common re-
commendation is to avoid fitting N-mixture models when detectability
is too low or when there is evidence unmodeled heterogeneity is too
high. While this recommendation is statistically valid, it is of little real
value to managers because detection probability is often unknown a
priori. That is, managers typically only have the count data in hand, and
variation in those data is complicated by heterogeneity in both abun-
dance and detection probability. Parametric bootstrapping procedures
can be implemented as a goodness-of-fit (GOF) test when fitting models
using a maximum likelihood framework, presumably allowing man-
agers to evaluate how well the model fits the data. Yet, parametric
bootstrapping procedures can suffer from substantial sample error, and
GOF tests for hierarchical models, in general, are considered under-
developed and in need of further evaluation (Kéry and Royle, 2016).
Nevertheless, although not the original intention and never formally
evaluated, the parametric bootstrap GOF test for N-mixture models is
often portrayed as assessing the validity in the parameter estimates
derived from the models.

Given count data of unmarked individuals are increasingly used to
inform management decision making, it is imperative that potential
biases and diagnostics are thoroughly evaluated. Here, we begin by
briefly describing types of heterogeneity that may arise in count data
using common sample designs. Using these scenarios as a foundation,
we simulate replicated count data across a gradient of detection prob-
ability to assess the bias in estimated abundances at various types and
extents of unmodeled heterogeneity in the count data. We also evaluate
the performance of the parametric bootstrap GOF test when used to
diagnose bias in parameter estimates. Furthermore, we explore the
extent to which assumption violations can be diagnosed prior to fitting
N-mixture models. In doing so, we propose a new diagnostic to identify
bias in parameter estimates, which we term the quasi-coefficient of
variation (hereafter, QCV). Finally, we discuss alternative procedures to
estimate population state variables that can be implemented using si-
milar monitoring data when assumption violations are suspected but

cannot be resolved.

2. Methods

2.1. General description of the scenarios

Heterogeneity in count data can arise from process variation (i.e.,
true variation in abundance) and variation in sample error (i.e., var-
iation in the detectability of individuals). Here, we focus on five sce-
narios that represent common sample designs used to monitor animal
populations. Scenario 1 represents the ideal sample design, where all
statistical assumptions are met. This scenario serves as a baseline and
allows for the examination of bias associated with variable detect-
ability. Scenario 2 represents a sample design in which random het-
erogeneity in abundance is present. This represents a case where in-
dividuals enter (i.e., are recruited and immigrate) and leave (i.e., die
and emigrate) the sample units across survey occasions within a pri-
mary occasion. Scenario 3 also represents a case where there is het-
erogeneity in abundance, but the heterogeneity is unidirectional (i.e.,
decreasing), which can occur if survey protocols are invasive (i.e., trap
or net captures, flipping cover objects [rocks, logs or cover boards],
electrofishing, etc.) and individuals leave the sample units or perish
after each survey occasion within a primary occasion. Although we
focus on a decrease in abundance here, the same patterns in bias can be
expected if abundances increase across survey occasions. Scenario 4
represents a sample design in which random unmodeled heterogeneity
in detection probability is present. Like scenario 2, this can be asso-
ciated with an assortment of factors, but our rationale was to capture a
case where explanatory variables that may influence detection prob-
ability were omitted, such as habitat, behavior, etc. Last, scenario 5
represents a sample design where detection probability decreases across
survey occasions within a primary occasion. This pattern could be as-
sociated with sample designs that cause individuals to become more
vigilant and, by extension, less detectable after each survey occasion,
changing environmental conditions that influence detectability (i.e.,
rain obscuring tracks or feces during sign surveys), animal activity
patterns that vary in synchrony with the mating season, etc. Again,
although we focus on a downward trend the same patterns can be ex-
pected if detectability increases across survey occasions.

2.2. Simulating population and monitoring data

We simulated population and monitoring count data using the
scenarios outlined above as a foundation. For each scenario, data were
simulated across a range in detection probability (ranging from 0.1 to
0.9 by 0.2), number of sample units (25, 50, or 100), number of survey
occasions (3, 6, or 12), and type and extent of heterogeneity in true
abundance or detection probability (see Sections 2.2.1–2.2.5 for spe-
cific details). This resulted in the evaluation of 837 combinations,
which were each simulated for 1000 iterations within program R (R
Core Team, 2016). The simulation code is provided in Appendix A.

2.2.1. Scenario 1
For scenario 1, true abundance for each sample unit was generated

assuming a Poisson process, where mean true abundance among sample
units (λ) was randomized by sampling from a uniform distribution
ranging from 1 to 50. Observation error was then simulated to generate
count data using a binomial process. We used this same approach when
simulating data for scenarios 2–5, except we induced heterogeneity in
abundance or detection probability.

2.2.2. Scenario 2
For scenario 2, we induced random heterogeneity in true abun-

dance. Specifically, we treated the initial true abundance for each
sample unit as the mean true abundance, and generated a true abun-
dance for each survey occasion by sampling from a gamma distribution
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