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a  b  s  t  r  a  c  t

Ecological  dynamics  often  exhibit  significant  temporal  variability  and  sudden  shifts  that  characterize
their  non-equilibrium  and  nonlinear  nature,  challenging  our  ability  to  understand  and  predict  their  tra-
jectories. Among  a set of ecological  time  series  originating  from  the long-term  monitoring  of three  large
and  deep  lakes,  nonlinear  forecasting  methods  (Simplex  projection  and  S-map)  indicated  that  most  of
the  time  series  exhibited  hallmarks  of complex  dynamics  in  the  form  of  nonlinear  behaviors.  Conver-
gent  Cross  Mapping  (CCM)  was  used  to  estimate  the causal  relationships  among  these  time  series  by
considering  different  time  lags.  The  significant  causal  relationships  were  then  used  to  construct  causal
networks  from  which  nodes  were  characterized  using  PageRank  and  CheiRank.  For  the  three  lakes,  the
dominance  of bottom-up  control  was  revealed  and  was  mostly  indirect  (i.e.,  nutrient-forcing  zooplank-
ton).  This  result  likely  evidences  the  transitivity  of  the  causal  relationships  obtained  by CCM  as well  as
the  mixed  phytoplankton  diet  of  zooplankton  species  limiting  the  identification  of  causal  relationships
among  these  two ecological  components.  Complementarily,  the  consistence  of  causal  relationships  for
the different  time  lags  may  highlight  a temporal  transitivity  by which  the  instantaneous  causal  signal  was
transmitted  over  time.  The  dual  representation  of  both  PageRank  and CheiRank  provided  a  straightfor-
ward  classification  of each  node  and  enabled  their  thorough  implications  in  the  information  flow  within
the  causal  networks.  The  complementary  use  of  CCM  and  network  metrics  constituted  an  efficient  way  to
delineate  ecological  causation  using  a high-resolution  time  series,  for which  linear  methods  performed
poorly,  and  provided  insights  into  the  dynamic  hierarchy  of the  different  ecological  variables  in  aquatic
ecosystems.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The relative implication of bottom-up and top-down controls
in driving ecological dynamics is of central interest in Ecology. The
early investigations highlighting a strong influence of nutrients on
algal dynamics (i.e., bottom-up control; Schindler, 1978) have been
challenged by the evidenced role of trophic cascade on ecosys-
tem processes (i.e., top-down control; Paine, 1980; Carpenter and
Kitchell, 1985). Since then, a large number of studies have been con-
ducted on lakes (Carpenter et al., 1995; Currie et al., 1999; Jeppesen
et al., 1997), mesocosms (Sinistro, 2009) or using paleolimnolog-

∗ Corresponding author.
E-mail address: victor.frossard@univ-smb.fr (V. Frossard).

ical reconstructions (Perga et al., 2010) to decipher their relative
implications on food-web dynamics.

Nonetheless, the quantification of the direction and strength of
ecological links in food webs remains a spurious task because of
their diversity (e.g., direct and indirect) and variation over time
(Berlow et al., 2004; Wootton and Emmerson, 2005; Deyle et al.,
2016; Lynam et al., 2017). Additionally, when extensive datasets
are available, ecological dynamics (i.e., time series) can often seem
erratic, possibly punctuated by sudden episodic bursts seemingly
unrelated to any other putative causal variables. This particu-
lar feature lies in their nonlinearity, which is characterized by
state-dependent behavior; the effect of one variable on another
is dependent on the states of other variables in the system (Dixon
et al., 1999; Anderson et al., 2008; Deyle et al., 2013; Glaser et al.,
2013). In this context, ecological dynamics can appear correlated
or not despite their causal association remaining constant, a phe-
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nomenon called ‘mirage correlation’ (Sugihara et al., 2012). As a
consequence, conventional correlation analyses can appear unsuit-
able for identifying the causal ecological links used to infer the
relative role of bottom-up and top-down controls.

An alternative view to correlative approaches, one that allows
the assumptions of equilibrium stability and stationarity to be
relaxed, can be found in a flexible, nonparametric class of nonlin-
ear forecasting models (Sugihara, 1994; Sugihara and May, 1990)
that are based on state-space reconstructions. These models have
shown impressive performance for forecasting complex ecologi-
cal dynamics (Dixon et al., 1999; Glaser et al., 2013). Recently,
an extension of these models, called ‘Convergent Cross Mapping’
(CCM), has been developed to identify causal relationships in
weakly coupled nonlinear systems (Sugihara et al., 2012). CCM
relies on Takens’ Theorem (Takens, 1981), which states that a
‘shadow-attractor’ reconstruction from the lags of a single one-
dimensional variable conserves the mathematical properties of the
original attractor of the full dynamical system (Sugihara et al.,
2012; Takens, 1981; Deyle and Sugihara, 2011). As a consequence,
if two variables belong to the same dynamical system, meaning
that they are causally coupled, their respective dynamics could
be mutually predicted based on the local neighborhoods of their
shadow attractors (Sugihara et al., 2012). Additionally, the accu-
racy of the forecasts (i.e., the cross mapping between the two
shadow attractors) would increase along with the length of the time
series (i.e., library length), thus exhibiting convergence as long as
the shadow attractors became progressively denser and fulfill the
historical dynamics. Due to this convergence property, CCM can
further identify directional coupling: the higher a forcing dynam-
ically constrains a subordinate variable, the more the amount of
information about the forcing variable (i.e., causal imprint) will be
encoded in the constrained variable (Sugihara et al., 2012). Com-
plementarily, because causation is transitive, the causal imprint
of a forcing can expand beyond its directly constrained variables
to be encoded in other indirectly interacting variables (Sugihara
et al., 2012), although the extent of the causal imprint decreases
as the causal coupling becomes more indirect (Ye et al., 2015b).
Recent valuable examples of the use of CCM can be found in Tsonis
et al. (2015), which addressed the causal influence of cosmic rays
on the earth’s global temperature variability and in van Nes et al.
(2015) which identified bi-directional causal relationships associ-
ated with lagged responses between the global earth’s temperature
and greenhouse gases.

In this study, we aim to couple CCM and network analyses to
reveal causal links among the ecological components (i.e., nutri-
ent/temperature, phytoplankton and zooplankton) of the three
largest French lakes using time series obtained from long-term
monitoring. This approach was designed to account for direct
and indirect causal links; therefore, possibly evidencing the rela-
tive implication of bottom-up and top-down controls. Considering
the pelagic zones of these three large lakes was expected to be
especially suitable for delineating the relative controls driving the
ecological dynamics because the implication of littoral and ter-
restrial environments have been shown to impact negligibly the
pelagic zones of such large systems (Perga and Gerdeaux, 2004;
Vadeboncoeur et al., 2008). We  expected that because of the rel-
atively low nutrient levels and the large size of the lakes, the
ecological dynamics would be mostly constrained by bottom-up
control, as suggested by Jeppesen et al. (1997), though never tested
using the present methodology. Complementarily, the bottom-up
control may  be strong enough to be transmitted up to the highest
food web level considered in this study (i.e., zooplankton), char-
acterizing indirect bottom-up relationships. Different time lags in
the causal interactions were accounted for to test the robustness
of the causal relationships over time. We  hypothesized a conserva-
tive structure of the causal network over time, signifying both a lag

Table 1
Main characteristics of the three studied lakes. Numbers in brackets for Lake Bourget
represent the changes in the watershed area and the flow tributary when the outlet
of  the lake to the Rhône river reverses in case of the river’s flood, inducing temporary
increase in both the watershed area and the tributary flow.

Annecy Bourget Geneva

Area (km2) 27 45 582
Watershed area (km2) 273 560 (4600) 7395
Volume (km3) 1.1 3.6 89
Maximal depth 65 147 309
Mean depth 41 81 152
Altitude (m a.s.l.) 446 231 372
Water turnover (year) 4 8 12
Phosphorus concentration (�g l−1) 8–10 8–12 8–12
Tributary flow 2.8 6.5 (365) 181

in ecological response to a driver as well as a transmission of the
instantaneous causal relationship over time. Prior to performing
CCM, the dynamic features (i.e., dimensionality and nonlinearity) of
the time series were analyzed, providing insights about their com-
plexity and nonlinear behavior, justifying the need for nonlinear
methods to correctly model and predict their dynamics.

2. Methods

2.1. Study sites and ecological time series

Lakes Annecy, Geneva and Bourget are three large and deep
lakes lying on the Western border of the French Alps. They lie in
a similar climatic (i.e., mean annual temperature of ∼11 ◦C) and
geologic (i.e., carbonate bed rocks) context, and their main envi-
ronmental features are provided in Table 1. They share a common
eutrophication history, yet to different extents during the middle
of the 20th century before remediation programs led to efficient
re-oligotrophication by the end of the last century that has per-
sisted to the present (Berthon et al., 2013). Despite the availability
of data since the first half of the 20th century (Observatory on
Alpine Lakes, www6.inra.fr/soere-ola), most environmental and
ecological variables have not been continuously monitored prior
to the implementation of rigorous monitoring for management at
different time periods for the three lakes: in the 1970s for Lake
Geneva (41 years), since 2003 for Lake Bourget (12 years) and since
2004 for Lake Annecy (11 years) (Data source © SOERE OLA-IS,
INRA Thonon-les-Bains, CIPEL, SILA, CISALB, [date of download:
20/10/2015], developed by INRA Eco-informatics). For each lake,
samples were collected at a single site located at the deepest part
of the lake. Although biological and chemical variables can exhibit
spatial variability, ongoing spatial analyses (no shown) suggest that
the sampling sites were representative the actual status of the
studied variables at a lake level. The parts of the time series for
which nutrient, phytoplankton and zooplankton data were avail-
able but at sampling frequencies varying from weekly to monthly
were considered. Among the numerous species of phytoplankton
and zooplankton identified over the monitored period, those whose
occurrence was <50% were excluded from the datasets. Time series
were standardized and then interpolated using a monotonic Her-
mite spline so that they exhibited identical and regularly spaced
numbers of observations (see Appendix 1 in Supplementary mate-
rial for the number of initial and interpolated data) (Fig. 1). The
possible effect of such an interpolation method on the nonlinear
signal and the identification of causal relationships was  assessed
using a random and nonlinear time series by randomly deleting
a variable number of time points (i.e., 1, 2, 5, 10, 15, and 20) as
inputs to the spline (Appendix 2 in Supplementary material). These
preliminary investigations suggested that the methods used were
robust to the extent of interpolation using the monotonic Hermite
spline considered in this study. The datasets for the three lakes were
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