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A B S T R A C T

Adaptive management has a long history in ecology and conservation. Uncertainty in both the state of a system
and the model defining its dynamics are fundamental challenges in adaptive management of complex ecological
systems. Traditional approaches in conservation biology often ignore one or both sources of uncertainty due to
the computational complexity involved. Here, we show that underestimating the role of uncertainty in both
model estimation and decision-making results in aggressive decision rules which can potentially lead to the
dramatic decline and possible collapse of a population, species, or ecosystem. We propose an approximate so-
lution to adaptive management of ecological systems under both model and state uncertainties that is compu-
tationally feasible and applicable to complex management problems and provide a software for detailed im-
plementation of our method, http://doi.org/10.5281/zenodo.1161521. We apply the proposed method in a
marine ecosystem management context and show that by learning from historical data and arrival of new ob-
servations, decision makers can adapt their policies to avoid decline in the population and reach a sustainable
population stability.

1. Introduction

Many studies in natural resource management emphasize the im-
portance of incorporating uncertainty in the management process
through adaptive management (Walters and Hilborn, 1978; Humphrey
and Stith, 1990; Lancia et al., 1996; Williams, 2011a). In general,
adaptive management is defined as a management that learns by doing
(i.e. planning) and adopts management policies to reflect new ob-
servations (i.e. learning) (Walters and Holling, 1990; Williams and
Brown, 2016). Adaptive management has a long history in ecological
literature and have been widely used in behavioral ecology (Mangel
and Clark, 1988), optimal harvesting in fisheries (Walters and Hilborn,
1976; Reed, 1979), as well as conservation biology and natural resource
economics (Mangel, 1985; Moore et al., 2010; Britton et al., 2011).
Walters and Hilborn (1976) are among the first implementations of
adaptive management to control the population of Fraser River sockeye
salmon under uncertainty in models describing the population dy-
namics.

Less computationally intensive approaches for natural resource
management have since followed, such as management strategy eva-
luation (MSE) (Smith, 1994; Mapstone et al., 2008; Bunnefeld et al.,
2011). Instead of attempting to solve for the optimal management
policy in the space of all possible sequences of actions a manager could
take, MSE evaluates consequences of a pre-determined set of strategies
defined based on management objectives and provides the outcome of

those simulations to the decision maker. Although this approach has
proved to be promising in many applications in natural resource man-
agement, it is hard to quantify the quality of the selected management
strategies compared to the optimal management.

Optimal management is the one strategy that results in the best
outcome among all possible strategies and hence can be found by op-
timizing the management objectives over the life-span of the natural
resource. Methods from the domains of decision theory and optimal
control (Bertsekas, 1996; Sutton and Barto, 1998), such as Markov
decision process (MDP), can be used to determine such an optimal
policy, which has been a basis of adaptive management theory in
ecology for years (Reed, 1979; Mangel, 1985; Clark and Kirkwood,
1986; Mangel and Clark, 1988; Sethi et al., 2005).

One of the main limitations of Markov decision process is the strong
assumption about full observability of the system's state. For example,
in fisheries management, the assumption is that the population biomass
of the fishery of interest (i.e. state of the system) is measured without
error, and fisher has certain knowledge of the exact population size
before setting the harvest quota each year (i.e. management action).
Relying on this assumption, Reed (1979) proves that the intuitive re-
sults of deterministic models (Beverton and Holt, 1957; Schaefer, 1957)
remain optimal for maximizing the expected economic return of fish-
eries subject to stochastic growth. Clark and Kirkwood (1986) ac-
knowledge the importance of the state uncertainty, due to error in the
measurements, to the optimal ecological management, while observing
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that if this assumption were relaxed, the “difficulty of the problem in-
creases markedly”. Due to this difficulty and the conclusions of Reed
(1979), most of the literature has focused on adaptive management
with full observability of state space (e.g. certain knowledge of popu-
lation biomass) and sidesteps this complexity in the decision making
step of adaptive management (e.g. setting harvest rules) (Costello et al.,
2016; Britten et al., 2017).

This has long begged the question: if the stochastic growth can be
safely ignored in determining the optimal strategies for controlling the
population (Reed, 1979), is the same true for measurement error? Since
then, researchers have proposed approximate methods to incorporate
the effect of measurement error on the optimal management policy and
have come to a counter-intuitive conclusion that in presence of mea-
surement error, the resulting policies are less conservative than the
deterministic solutions (Ludwig and Walters, 1981; Clark and
Kirkwood, 1986; Roughgarden and Smith, 1996; Engen et al., 1997;
Sethi et al., 2005). Clark and Kirkwood (1986) acknowledge these
counter-intuitive results: “results appear to contradict the conventional
wisdom of renewable resource management, under which high un-
certainty would call for increased caution in the setting of quotas”. We
show that the reason for this counter-intuitive result arises from non-
trivial assumptions made to simplify the decision optimization process
of management and to get past the computational complexity. By fully
incorporating the effect of measurement error, we illustrate that the
resulting optimal strategies for controlling the system is significantly
different (and not necessarily less conservative) with respect to the
deterministic solutions, and ignoring this effect can result in dramatic
declines in the species population and possibly total collapse of the
ecosystem.

Aside from the uncertainty in the estimating population biomass
due to the measurement error, another challenge in adaptive manage-
ment is uncertainty in the models defining dynamics of the population
(i.e. model uncertainty). Walters and Hilborn (1978) provide an early
non-mathematical overview that explores the effect of model un-
certainty on management outcomes in natural resource management.
They notice that once model uncertainty is introduced, finding the
optimal management becomes very complex and hence solving the
decision optimization under model uncertainty becomes intractable.
This problem is known as the curse of dimensionality (Bertsekas, 1996)
in decision theory. As a result, most of attempts to include model un-
certainty in adaptive management of natural resources have focused on
simplified examples (McDonal-Madden et al., 2010; Runge, 2011).

Here, we propose an approximate solution to adaptive management
of complex ecological systems under both model and state uncertainties
that is computationally scalable and applicable to the complex real-
world management problems, which we call PLUS (Planning and
Learning for Uncertain Systems). PLUS is comprised of two steps: model
estimation (i.e. learning) and decision optimization (i.e. planning). We
also provide a publicly available software and detailed implementation
of our method, as an R package at http://doi.org/10.5281/zenodo.
1161521. The proposed method builds upon recent advancements in
adaptive management in domains of engineering and computer sciences
(Doshi-Velez et al., 2012; Memarzadeh et al., 2014) and addresses
several gaps in the literature regarding adaptive management and its
application to natural resource management such as: (1) proposed
adaptive management approaches being prone to curse of dimension-
ality and as a result are only applied to simplified examples, (2) pro-
posed approaches make non-trivial assumptions and/or approximations
to get past the computational barrier in the cost of losing flexibility and
generality, which might also result in finding bad decision rules that
can potentially lead to dramatic decline in population of biological
species and possibly total collapse of the ecosystem.

We build the decision optimization step based on the framework of
partially observable Markov decision process (POMDP) (Smallwood
and Sondik, 1973; Sondik, 1978). POMDPs overcome one of the main
limitations of Markov decision process (MDP, that are very popular in

adaptive management of natural resources) and incorporate measure-
ment error in the decision making by allowing partial observability of
the state space through the introduction of belief state: manager's
knowledge about system's state in a shape of probability distribution.
This means that POMDP incorporates uncertainty in estimating the
population biomass in the probabilistic manner. The reader should note
that the belief state is well-known in the family of state space models for
estimating the dynamics model under state uncertainty (Costello et al.,
2016; Britten et al., 2017), although has been ignored and marginalized
out in the decision making step. POMDPs are able to incorporate state
uncertainty in decision making step with introduction of much higher
computational complexity. Detailed formulation of POMDPs is reported
in Appendix A. POMDPs have recently been used widely in ecological
literature for control of animal population (Runge, 2013), natural re-
source management (Williams, 2009, 2011b), fishery management
(Kling et al., 2017), and conservation in the face of climate change
(Conroy et al., 2011). Although these studies emphasize partial ob-
servability and environmental variability as the challenging sources of
uncertainty in the management of natural resources, they do not spe-
cifically propose an efficient method and software to get past the
computational barrier. Moreover, POMDPs still require perfect knowl-
edge of the models defining the system's dynamics, and as a result
cannot incorporate model uncertainty. The approach taken by Walters
and Hilborn (1976) of including the model parameters into the state
space can be also implemented in POMDPs, however finding optimal
strategies under such formulation is intractable and suffers from the
curse of dimensionality. Here, we develop a heuristic based on mini-
mization of the Bayes risk to overcome the computational complexity of
decision making under model uncertainty and allow incorporation of
both state and model uncertainties feasibly. The detailed formulation of
the heuristic is reported in Appendix B. Overall goal of the decision
optimization step is to find a decision (i.e. catch quota in the beginning
of each year) that maximizes the long-term expected economic return of
managing the system (i.e. fishery).

As mentioned before, the second step corresponds to estimating the
dynamics model from historical observations and reducing the model
uncertainty. In this step, the goal is to represent the historical ob-
servations in a shape of probability distribution over population dy-
namics model, and adaptively update the model and reduce the un-
certainty once a new set of observations arrive in the following years.
One of the main challenges in this step is that observations are only
noisy measurements of the state of the system and hence need careful
consideration. In general, one might not be able to represent the pos-
terior distribution of the model parameters given the historical ob-
servations in closed-form, and as a result, need to adapt an approximate
learning scheme based on Markov chain Monte Carlo (MacKay, 2003;
Memarzadeh et al., 2014, Memarzadeh et al., 2016; Costello et al.,
2016; Britten et al., 2017). Although in this article, we assume that the
uncertainty is among a set of candidate models (as in Walters and
Hilborn, 1976) and as a result, learning can be done in closed-form
using Bayes rule (refer to Appendix C for detailed formulations).

2. Model formulation

We model the population dynamics of the fishery as follow,

= − ++x f x c σ( )t t t t
X

1 (1)

where xt ∈ X denotes the population biomass, ct ∈ C is the harvested
biomass (i.e. catch quota), with subscript t denoting years, σt

X is the
annual biomass deviation due to stochasticity in the population dy-
namics (which we call growth noise), and f is the function governing
the dynamics. We consider two candidate functions for f as the Ricker
model (Ricker, 1954),
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