
Contents lists available at ScienceDirect

Ecological Engineering

journal homepage: www.elsevier.com/locate/ecoleng

Estimation of mortality and survival of individual trees after harvesting
wood using artificial neural networks in the amazon rain forest

Leonardo Pequeno Reisa,⁎, Agostinho Lopes de Souzab, Pamella Carolline Marques dos Reisb,
Lucas Mazzeic, Carlos Pedro Boechat Soaresb, Carlos Moreira Miquelino Eleto Torresb,
Liniker Fernandes da Silvad, Ademir Roberto Ruschelc, Lyvia Julienne Sousa Rêgob,
Helio Garcia Leiteb

a Instituto de Desenvolvimento Sustentável Mamirauá, Grupo de pesquisa em Ecologia Florestal, Estrada do Bexiga, 2.584, Bairro Fonte Boa, Cx. Postal 38 69.553-225,
Tefé, AM, Brazil
bUniversidade Federal de Viçosa, Campus Universitário de Viçosa, Departamento de Engenharia Florestal, Avenida Peter Henry Rolfs, s/n, CEP 36.570-900, Viçosa, MG,
Brazil
c Embrapa Amazônia Oriental, Travessa Doutor Enéas Pinheiro, CEP 66.095-903, Belém, PA, Brazil
dUniversidade Federal do Recôncavo da Bahia, R. Rui Barbosa, n. 710, CEP 44380-000, Cruz das Almas, BA, Brazil

A R T I C L E I N F O

Keywords:
Forest management
Modeling
Artificial intelligence

A B S T R A C T

Modeling individual trees in tropical rain forests in the Amazon allows for the safe use of scarce resources in a
sustainable way. Unfortunately, in the Brazilian Amazon, rain forest growth and production models are not yet
used to estimate future forest stock. Thus, forest management plans do not present technical-scientific support
that guarantees sustainable production of wood throughout the cutting cycle. Therefore, this work aims to
estimate the survival and mortality of individual trees in a selectively harvested forest using Artificial Neural
Networks (ANN) to support silvicultural decisions in forest management in the Amazon rain forest. In 1979, a
selective harvest was carried out, with 72.5 m3 ha-1 in an area of 64 ha in Floresta Nacional do Tapajós, in the
state of Pará, Brazil. In 1981, 36 permanent plots were installed at random and inventoried. Nine successive
measurements were carried from 1982 to 2012. In the modeling, classification, survival, and mortality, training
and ANN testing were performed, using input variables such as: different semi-distance-independent competition
indices (DSICI), diameter measured (dbh), forest class (FC), trunk identification class (TIC), competition index
(CI), growth groups (GG), liana infestation intensity (liana); and crown lighting (CL); Damage to tree (D) and tree
rotting (R). The categorical output variables (Classification) were Dead or Surviving tree. Overall efficiency of
the classification was above 89% in training and above 90% in the test for all ANNs. Survival classification hit
rate was above 99% in the test and training for all ANNs but the mortality score was low, with hit rates below
6%. The overall Kappa coefficient was below 8% for all ANNs (ranked “poor”) but all ANNs were above 55% in
the survival classification (ranked “good”). ANN estimates the individual survival of trees more accurately but
this does not occur with mortality, which is a rarer event than survival.

1. Introduction

Studies on the dynamics of rain forests are important to understand
the evolution of the forest ecosystem after anthropic disturbances, for
example, during forest management for wood production. These studies
provide information to model growth and production, and for prognosis
on the forest structure throughout the cutting cycle. One of the main
contributions is the use of models for individual trees, which is one of

the alternatives to manage rain forests with a view to sustainability
(Reis et al., 2016).

The individual tree models estimate the survival and mortality,
these components of forest dynamics are required for correct prognosis
on number of trees, basal area, distribution of diameters and produc-
tion.

One of the problems in modeling mortality is that several random
factors may cause the death of trees. For example, regular mortality is
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caused by aging, suppression and competition, as well as events that
occur less frequently, for example, normal incidence of plagues and
diseases, and meteorological phenomena (droughts, storms, etc.); by
comparison, irregular mortality may be caused by large-proportion
fires, plague and disease outbreaks, as well as more severe adverse
meteorological conditions (Vanclay, 1994). Mortality also occurs as a
result of injuries induced by wood harvesting, which may damage roots
and barks, creating points of entry of plagues and diseases; as well as
disturbances on the canopy, which may lead to disadvantages to some
tree species (Vanclay, 1994).

Tree mortality ratio may be reached using regression (Phillips et al.,
2004, 2003; Valle et al., 2007). These authors used a system of equa-
tions to estimate the likelihood of natural mortality of trees by con-
sidering only a diameter-dependent stochastic process, or artificial in-
telligence methods, mainly Artificial Neural Networks (ANNs)
(Diamantopoulou, 2005; Reis et al., 2016). ANNs are computer models
inspired by the nervous system of living beings. One ANN creates a set
of parallel processing units, characterized by artificial neurons that are
interconnected through a large number of interconnections (Silva et al.,
2010).

Different studies that modelled mortality and survival of individual
trees using ANN found a more adequate fit than traditional statistical
techniques (Guan and Gertner, 1991a, 1991b; King et al., 2000). They
have shown that it is possible to have a prognosis on the individual
survival and mortality of trees using ANN. These authors used two
models to estimate tree mortality: one model with two independent
variables, DBH and increase in DBH, and one model with three vari-
ables, with an extra categorical variable which represented the condi-
tion of the tree. The output was categorical (classification), that is, the
dead tree was coded with 0 and the survivor with 1. The ANN results
were compared with logistic regression, and better responses were
found to predict mortality.

This estimate with ANN for the purpose of classification, indicating
whether the tree is dead or alive, shows that ANN has a far more
complex function than traditional classification techniques. The final
discriminant function is highly flexible and non-linear, and it offers
better separation (King et al., 2000).

However, only one study was found on modelling of tree mortality
in rain forests (Castro et al., 2015), but it did not involve an extended
period of time nor was it conducted in a harvested forest, whose dy-
namics is quite different from unharvested areas (Reis et al., 2015).

Growth prognosis on the individual diameter of trees, after har-
vesting in a tropical rain forest in the Amazon, was precisely estimated
using ANN (Reis et al., 2016), and the same occurred in other types of
uneven-aged forests (Ashraf et al., 2015; Richards et al., 2008).

Given the problem in offering a prognosis on the survival and
mortality of individual trees in tropical rain forests, the aim of this
study was to offer a prognosis for the individual survival and mortality
of trees using post-harvest artificial neural networks in the Amazon, in
order to offer input for forestry decisions in forest management.

2. Material and methods

2.1. Study area

The study area is located in the Tapajós National Forest, near Km 67
(55° 00′W, 2° 45′ S) of the BR-163 Highway, Cuiabá-Santarém. It is part
of the Amazon biome and the typology is solid-ground, Dense
Ombrophilous Forest. The climate of the region is humid and tropical
with mean annual temperature of 26 °C, and it is classified as Ami ac-
cording to Köppen’s system. Mean relative humidity corresponds to
86%, with mean annual rainfall from 1900 to 2200mm. It has flat to
wavy topography, with the occurrence of a Dystrophic Yellow Latosol
(Alvares et al., 2013; Costa Filho et al., 1980).

In the Tapajós National Forest, especially in the study area, Costa
Filho et al. (1980) reported the use of selective harvest, conducted

during the 1940s, for four species with high commercial value: Brazi-
lian rosewood (Aniba rosaeodora Ducke), Brazilian redwood (Manilkara
huberi (Ducke) A. Chev.), Brazilian walnut (Cordia goeldiana Huber) and
cedar (Cedrela odorata L.). In 1979, an intensive harvest of 64 wood
species was conducted on 64 ha of the study area, with mean extraction
volume of 72.5m3 ha−1 (Reis et al., 2010).

The species that stood out in terms of harvest volume, at the time,
were: Hymenaea courbaril L., Carapa guianensis Aubl., Manilkara huberi,
Lecythis lurida (Miers) S. A. Mori., Bertholletia excelsa Humb. & Bonpl.,
Astronium lecointei Ducke, Goupia glabra Aubl., Virola michelii Heckel,
Erisma uncinatum Warm. and Terminalia amazonia (J. F. Gmel) Exell,
which, together, represented 47.4% of the total extracted volume (Reis
et al., 2010). The harvest was conducted according to two treatments:
cutting all trees with dbh≥ 45 cm, on 39 ha; and cutting the trees with
dbh≥ 55 cm, on 25 ha (Costa Filho et al., 1980). However, the treat-
ments were considered together, by creating only one community,
while taking into account the high similarity found in the comparisons
which had been made (Reis et al., 2010).

In 1981, 36 permanent plots of 50m x 50m each were randomly
installed, where all trees with dbh≥ 5 cm were botanically identified in
loco. New measurements for these permanent plots occurred in 1982,
1983, 1985, 1987, 1992, 1997, 2007, 2010, and 2012 (Reis et al.,
2016).

2.2. Variables and data used for training and testing of neural networks

The permanent plots were divided into two groups: one group
consisted of 29 plots for training of ANNs, and one group had 7 plots,
for the generalization of trained ANNs, with a total of 80% of data for
training and 20% for generalization (test). The plots used in the gen-
eralization (test) were not part of the training set. This was to evaluate
the model with independent data to the training of ANNs (Reis et al.,
2016). A total of 78,067 individuals were monitored over time; there
were 8332 cases of mortality and 69,735 cases of survival. For mor-
tality, the training used 6819 trees while the test used 1513. For sur-
vival, the training used 56,421 trees while the test used 13,314.

To model the mortality and survival of individual trees, the entry
variables were: diameter measured at a height of 1.30m (dbh), forest
class (FC), trunk identification class (TIC), competition index (CI),
growth groups (GG), liana infestation intensity (liana): variable not
observed; liana1: no presence of liana on the tree; liana2: presence of
lianas, however, with no injuries; and liana3: presence of lianas, re-
stricting growth); and crown lighting (CLI0: variable not observed;
CLI1: emerging top or completely exposed to light; CLI2: partially
lighted top, that is, partially covered by neighboring tree tops; CLI3: top
completely covered by neighboring tree tops) (Reis et al., 2016); in-
juries to the tree (D0: variable not observed; D1: tree with no injuries;
D2: mild injuries caused by natural causes; D3: mild injuries caused by
harvesting; D4: injuries caused by cutting the lianas; D5: severe injuries
due to natural causes; D6: severe injuries caused by harvesting; D10:
recovered injuries) and tree rotting (R0: variable not observed; R1: no
rotting and R2: presence of rotting). The categorical output variables
(Classification) were Dead or Surviving tree.

The forest classes (FC) were defined according to the methodology
suggested by Silva et al., 2005:

1 Mature forest: the sub-plot shows at least one tree whose diameter is
equal to or larger than 40 cm

2 Forest under construction: the sub-plot has at least one tree whose
diameter is equal to or larger than 10 cm and smaller than 40 cm

3 Clearing: there is an opening on the canopy of at least 50% of the
area of the sub-plot and few or no trees with a diameter larger than
10 cm on the sub-plot. When existing, the crowns project themselves
outside the limits of the sub-plot.

Trunk identification classes (TIC) were defined using the
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