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A B S T R A C T

Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal
remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover
can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-
photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and
gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize sur-
face variability of vegetation cover and bare ground across a range of vegetation community types. Using three
year composites of Landsat data, we modeled relationships between spectral information and field data collected
at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess
improvement over single variables. We found that for all vegetation types, percent cover bare ground could be
accurately modeled with single indices that included a combination of red and shortwave infrared bands, while
near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation
cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland eco-
logical states across our study area, illustrating how this approach can be implemented to guide dryland eco-
system management.

1. Introduction

Drylands, which constitute about 40% of the Earth's terrestrial land
mass, are defined as regions where the ratio of mean annual pre-
cipitation is less than two thirds of potential evapotranspiration, re-
sulting in low overall soil moisture available to vegetation (Lal, 2004;
Johnson et al., 2012; Yang et al., 2012). Dryland ecosystems often
contain a large variety of endemic plant and animal species, and can
support high biodiversity despite their high levels of aridity
(Millennium Ecosystem Assessment, 2005; Stohlgren et al., 2005).
Dryland ecosystems are strongly water-limited, and while many species
are adapted to limited resources these ecosystems are vulnerable to
falling into persistent degraded condition due to improper land-use,
often coupled with abrupt climatic shifts (Weltzin et al., 2003;
Lioubimtseva et al., 2005; Schwinning et al., 2008; Johnson et al.,
2012). Understanding causes and patterns of persistent land degrada-
tion in responses to climate change and/or land-use in drylands, often
referred to as “desertification” or “state change”, has become a focus of

research and management in drylands globally in recent decades (Steele
et al., 2012; Bestelmeyer et al., 2015).

The arid and semi-arid landscapes of the Colorado Plateau are
highly susceptible to desertification due to climatic variations and
human activities (Mouat et al., 1997; Dregne, 2002; Clements, 2004;
Schwinning and Sala, 2004; Copeland et al., 2017; Munson et al.,
2011a). Change-inducing drivers impacting Colorado Plateau drylands
include current and historical overgrazing by cattle and sheep
(Alzérreca-Angelo et al., 1998; Neff et al., 2005; Fernandez et al.,
2008), the establishment and spread of invasive species (Evans et al.,
2001; Stohlgren et al., 2001; Gelbard and Belnap, 2003), and the im-
pacts of vegetation clearing associated with oil and gas development
(Allred et al., 2015; Nauman et al., 2017). Deleterious ecosystem im-
pacts of these activities include habitat fragmentation (Belnap, 2002;
Copeland et al., 2009; Webb and Wilshire, 2012), soil erosion (Belnap
and Gillette, 1998; Munson et al., 2011b), and increased dust produc-
tion which has been shown to increase the rates of snowmelt in the
Rocky Mountain snowpack (Painter et al., 2010; Deems et al., 2013;
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Skiles et al., 2015). Effective management of Colorado Plateau eco-
systems requires information both on the extent and intensity of drivers
of change, as well as spatiotemporal data on the distribution of eco-
system states (Steele et al., 2012) and ecosystem indicators that can be
used to assess proximity or risk of an undesired state change
(Bestelmeyer et al., 2013).

In the dryland ecosystems of the Colorado Plateau, indicators used
to identify ecological states include cover and connectivity of bare
ground, foliar cover of vascular plants, plant community composition,
presence and abundance of invasive species, and cover of biological soil
crusts (Herrick et al., 2005; Miller et al., 2011; Toevs et al., 2011;
Duniway et al., 2016). Biological soil crusts (BSC), a thin layer of cy-
anobacteria, lichens and mosses, are particularly sensitive to surface
disturbance (Weber et al., 2014). BSC play an important role in stabi-
lizing dryland soils by protecting surfaces from wind and water erosion,
and by limiting the amount of dust emitted into the air (Belnap and
Gillette, 1998). Additionally, the presence of healthy BSC layers pro-
motes viable water-holding capacity and fertility of soils by reinforcing
the levels of plant-essential nutrients (Verrecchia et al., 1995; Belnap,
2003). The reduction of BSC cover from disturbance is a significant
contributor to the desertification of arid regions due largely in part to
the loss of soil stability and fertility as well as the increase of dust
emissions. The effects of anthropogenic changes on vegetation, BSC and
soils are often challenging to monitor over regional scales; the devel-
opment of an accurate, flexible and repeatable methodology to reliably
assess the effects of land change would benefit ecosystem monitoring,
conservation and restoration efforts of dryland ecosystems.

Remote sensing provides a synoptic view of landscapes and has
facilitated the monitoring of land change and recovery from dis-
turbance (Mas, 1999; Weng, 2002; Wulder et al., 2009; Vogelmann
et al., 2012; Bunting et al., 2017). Landsat Thematic Mapper (TM) data
have been used to monitor the abundance and change in vegetation
cover, often by calculating vegetation indices (VIs) that rely on differ-
ences in the red and near-infrared bands to capture the greenness of
photosynthetic vegetation (PV) (Table 1; Tucker, 1979; Pickup, 1995;
Dawelbait and Morari, 2008). However, dryland ecosystems are chal-
lenging to measure using remote sensing due to the frequent lack of a
strong green vegetation signal, and confusion between non-photo-
synthetic vegetation (NPV) and spectrally variable bare ground that
may include BSC (Smith et al., 1990; White et al., 2000; Dawelbait and
Morari, 2008; Higginbottom and Symeonakis, 2014; Guerschman et al.,
2015; Li and Guo, 2016). The Normalized Difference Vegetation Index
(NDVI) has general utility for capturing quantities of green vegetation,
but can be sensitive to soil background where soil fractions are high
(Huete and Tucker, 1991). Various corrections to NDVI have been
suggested to account for soil variability, particularly in drylands (e.g.,
SAVI; Table 1; Huete, 1988).

There are limits to accounting for spectral variability with a single
index. Spectral mixture analysis (SMA; Smith et al., 1990) is an ap-
proach that can more explicitly account for soil background variability,
by modeling each pixel as a mixture of spectral “endmembers” (e.g.,
green vegetation, soil, and shadow), and has been found to perform
well in arid regions (Smith et al., 1990; Okin et al., 2001; Asner and
Heidebrecht, 2002; Okin, 2007). Multiple endmember spectral mixture
analysis (MESMA), in particular, may help to better quantify vegetation
cover by optimizing the selection of spectral endmembers on a per-pixel
basis (Roberts et al., 1998). This can help to account for soil variability
and also better distinguish among contributions from photosynthetic
vegetation, non-photosynthetic vegetation (NPV; Roberts et al., 1993)
and soil.

Most of the power of MESMA comes from the application of large
reference endmember libraries to hyperspectral image data (e.g.,
AVIRIS), which can be a drawback when considering regional mon-
itoring applications. The use of lower dimensionality image data (i.e.,
Landsat) available for long time series analysis reduces the power of
MESMA. Yet the handling of multiple dimensions of spectral informa-
tion available with Landsat has substantial merit if easily im-
plementable. For example, The Tasseled Cap approach (Table 1; Kauth
and Thomas, 1976) easily incorporates the data dimensionality of
Landsat and has proven popular for large area studies (Dymond et al.,
2002; Zhang et al., 2002). Tasseled Cap Brightness, Greenness, and
Wetness transforms are clearly related to SMA fractions of soil/shadow,
green vegetation, and NPV, respectively, but may not be locally opti-
mized.

A suite of variables that are locally optimized for spectral differ-
ences among PV, NPV, and bare soil, can be combined to form robust
indicators of vegetation condition and gradual land change.
Implementing the use of a suite of spectral variables to characterize
vegetation states has proven to be useful in past studies (Hill, 2013;
Wang et al., 2013; Villarreal et al., 2016a). A locally-optimized suite of
remote sensing variables could supplement long-term, ground-based
monitoring programs meant to track changes in vegetation and eco-
system condition (Jensen, 2000; Dawelbait and Morari, 2008; Duniway
et al., 2012).

The objective of this study was to develop an easily implementable
but robust remote sensing approach to monitor ecosystem indicators,
with the goal of providing guidance for land managers interested in
avoiding land degradation and promoting recovery in dryland ecosys-
tems. To accomplish this we evaluated the ability of Landsat-derived
spectral variables to characterize surface variability in vegetation cover
and bare ground across a range of dryland vegetation community types.
We used a mix of conventional spectral indices, band transformations
and single reflectance bands that we hypothesized would capture the
variability of PV, NPV and soil brightness present in dryland plant

Table 1
Landsat bands, spectral indices, and transformations selected for this study based on their known (and hypothesized) ability to capture three basic surface properties of drylands:
photosynthetic vegetation (surface property=PV), non-photosynthetic vegetation (surface property=NPV), and bare ground (surface property= Soil).

Index Acronym Surface Property Formula Reference

Normalized Difference Vegetation Index NDVI PV −

+

NIR Red
NIR Red

( )
( )

Tucker, 1979

Soil Adjusted Vegetation Index SAVI PV
+

−

+ +
L(1 )NIR Red

NIR Red L
( )

( )
Huete, 1988

Tasseled Cap Transformation (greenness) TCG PV Kauth and Thomas, 1976
Soil Adjusted Total Vegetation Index SATVI PV/NPV*

+ −
−

+ +
L(1 )SWIR Red

SWIR Red L
SWIR( 1 )

( 1 )
2

2
Marsett et al., 2006

Non-Photosynthetic Vegetation Normalized Difference NPVND NPV − +

+ +

SWIR Red NIR
SWIR Red NIR

1 ( )
1 ( )

Tasseled Cap Transformation (wetness) TCW NPV Kauth and Thomas, 1976
Soil Normalized Difference Index SNDI Soil − +

+ +

Red NIR SWIR
Red NIR SWIR

( 1)
( 1)

Tasseled Cap Transformation (brightness) TCB Soil Kauth and Thomas, 1976
Landsat TM band 3 (0.63–0.69 μm) Red Soil

L = soil brightness correction factor. *SATVI is considered a total vegetation index, and is therefore considered for both PV and NPV.
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