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A B S T R A C T

The response of near ground air temperature to changing precipitation regimes has received extensive attentions
in climate change studies. In semi-arid and arid regions, the mean annual temperature correlates negatively with
precipitation. However, it remains unclear to what extent one unit change of precipitation can trigger tem-
perature change (i.e., the temperature sensitivity to precipitation). Taking a semi-arid region in Northwest China
as a study area, we quantitatively investigated the temperature sensitivity to precipitation change. Further
analysis shows that the temperature sensitivity correlates well with the Normalized Difference Vegetation Index
(NDVI), indicating that vegetation plays an important role in controlling the long-term temperature sensitivity to
precipitation change. Specifically, different land covers show significant differences in temperature sensitivity,
with bare soil generally having a higher sensitivity while more densely vegetated areas such as forest and
grassland having lower sensitivity values. This implies that vegetation contributes to reducing the temperature
sensitivity to precipitation change through the land surface-atmosphere interaction in semi-arid and arid regions.

1. Introduction

Near ground air temperature (T) is a variable of the land surface
energy transfer process controlled by various local properties including
solar radiation, water availability, and land cover types. In semi-arid
and arid regions where temperature is largely regulated by precipita-
tion, special attentions have been paid to the high temperature asso-
ciated with drought events (Yin et al., 2014). The response of tem-
perature to precipitation change results from land surface-atmosphere
interaction, in which vegetation plays an important role (Pielke et al.,
1998); naturally, vegetation has been widely recognized as a key factor
in regulating the near ground air temperature magnitude (Bonan, 1997;
Peng et al., 2014). However, it remains unclear whether or not vege-
tation regulates the long-term temperature sensitivity to precipitation
change. Moreover, we know little about the extent to which air tem-
perature will increase/decrease in accordance with a given decrease/
increase in precipitation in semi-arid and arid regions. Lacking such
knowledge limits our ability to predict extreme temperature events in
these regions, particularly at a time when global precipitation is pro-
jected to change in most parts of the world (Stott, 2016).

In semi-arid and arid regions, mean annual temperature correlates
negatively with precipitation (Yin et al., 2014), with reduced eva-
porative cooling effect well explaining the relatively higher

temperature during drought. Meanwhile, vegetation greening has been
suggested to cool down local environment (Peng et al., 2014; Shen
et al., 2015) through enhanced evaporative cooling, justifying the role
of vegetation in regulating local energy balance (Findell et al., 2009;
Wang and Dickinson, 2012). With land cover dynamic being widely
recognized to regulate temperature, whether it controls the tempera-
ture sensitivity to precipitation change has rarely been explored,
framing the purpose of this study. Considering the important role of
vegetation plays in controlling the land surface-atmosphere interaction,
we hypothesize that vegetation regulates the long-term temperature
sensitivity to precipitation change in semi-arid and arid regions. To test
this hypothesis, we use a temperature and precipitation dataset com-
plemented with land cover maps and Normalized Difference Vegetation
Index (NDVI) dataset in Northwest China mainly to: 1) estimate the
sensitivity of near ground air temperature to precipitation change; and
2) investigate the role of land cover in determining the long-term re-
sponse of near ground air temperature to precipitation change.

2. Materials and method

2.1. Study area and dataset

The study region is located in Northwest China, central Eurasia,
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stretching between 43.0–49.0 °N and 82.5–91.0 °E with an area of ap-
proximately 3.70×105 km2 (Fig. 1, left-hand panel). The annual pre-
cipitation ranges from 110mm to 550mm, and the mean annual air
temperature ranges from −7 °C to 7 °C. This region is classified as semi-
arid with an aridity index below 0.5 according to Global Aridity and
PET Database (http://www.cgiar-csi.org/data/global-aridity-and-pet-
database). This is an ideal place to explore the temperature and pre-
cipitation relationship because it is less affected by the Arctic Oscilla-
tion or El Niño–Southern Oscillation (Adler et al., 2008).

To analyze the temperature sensitivity to precipitation, we used
monthly mean air temperature observed at 2m above the ground and
monthly total precipitation from the period of 1982–2006 (China
Meteorological Data Service Center, http://data.cma.cn/). These two
datasets are at a spatial resolution of 0.5°× 0.5° interpolated by thin
plate spline (TPS) in ANUSPLIN software based on 2, 472 site mea-
surements and Global 30 Arc-Second Elevation (GTOPO30) data re-
sampling. The assessment reports of precipitation and temperature
(NMIC, 2012) showed that the monthly root-mean-square error (RMSE)
varies from 0.2 mm to 0.8mm for precipitation, and the annual RMSE
ranges from 0.2 °C to 0.3 °C for temperature. In addition, the datasets
have been widely evaluated for reliability and applied in numerous
meteorological assessments and environmental impact studies (e.g.,
Wang et al., 2013; Wu et al., 2017).

Land cover maps of four years (i.e., 1990, 1995, 2000 and 2005)
with a spatial resolution of 1 km×1 km were obtained from the Data
Center for Resources and Environmental Sciences, Chinese Academy of
Sciences (RESDC) (http://www.resdc.cn). The land cover types are
classified at two levels, the first level contains 6 broad categories, i.e.,
cropland, forest, grassland, water body, urban area, and bare soil; the
second level details the aforementioned 6 categories into 25 more
specific land cover types (see Liu et al., 2003 for details). In the study
region, forest, grassland and bare soil account for more than 90% of
total area. Hence, in this study we only considered these 3 main land
covers on the first level. The coverage fraction of each land cover, de-
fined as the ratio of area between the specified land cover type and the
pixel area, was calculated at the pixel level. Evaluations show that land
cover did not change much in the past two decades (Fig. 1, right-hand
panel). Therefore, we used the mean coverage fraction of the four years
to represent the land cover conditions.

To account for the vegetation phenology, we used the continental
Global Inventory Modelling and Mapping Studies NDVI dataset (http://
glcf.umiacs.umd.edu/data/gimms) with a spatial resolution of
8 km×8 km and an interval of 15 d (Tucker et al., 2005). We applied
the maximum value composite method to generate a monthly NDVI
dataset (Holben, 1986) to reduce noise mainly from clouds. The NDVI

data were then spatially aggregated to a resolution of 0.5°× 0.5° so that
they agreed, geographically, with the temperature and precipitation
records.

2.2. Quantifying the temperature sensitivity to precipitation change

The monthly mean temperature and total precipitation were ag-
gregated to the growing season (April through October, typical for
Northwest China) at the pixel level (0.5°× 0.5°). We used a linear re-
gression model (Yin et al., 2014) to detect the long-term temperature
response to precipitation change,

= +T a a PΔ Δ0 1 (1)

where TΔ and PΔ represent the annual mean temperature anomaly (°C)
and total precipitation anomaly (mm) in the growing season, respec-
tively; a0 equals zero because both TΔ and PΔ are anomalies, while the
linear regression slope a1 (°C mm−1) is determined by the least square
method. In general, a1 is negative for semi-arid and arid regions; we
defined the sensitivity coefficient β (°C mm−1) as the absolute value of
a1, in order to quantify the temperature sensitivity to precipitation
change as,

=β a1 (2)

Such correlation analyses were performed at each pixel.

2.3. Investigating the role of vegetation in determining the temperature
sensitivity to precipitation change

To investigate how land cover type controls the temperature sen-
sitivity to precipitation change, β was linearly correlated with coverage
fraction of forest, grassland, and bare soil, respectively at pixel level,

= +β b b CF0 1 (3)

where b0 and b1 are fitting parameters, and CF is the coverage fraction
of the three major land cover types (i.e., forest, grassland and bare soil).

In addition to land cover type, we used NDVI as a surrogate of ve-
getation dynamics to numerically quantify how vegetation controls the
temperature sensitivity to precipitation change; β was then linearly
correlated with NDVI as,

= +β c c NDVI0 1 (4)

where c0 and c1 are fitting parameters.
The F-test was used throughout this paper to assess the significance

of regressions.

Fig. 1. The study region and the spatial distribution of land cover (left-hand panel); right-hand panel is the frequency distribution of land cover change evaluated by the difference of
coverage fraction at pixel level for bare soil (a, b, and c), forest (d, e, and f), and grassland (g, h, and i); the three columns from left to right represent corresponding change of land cover
between 1990 and 1995, 1995 and 2000, and 2000 and 2005.
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