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Phycocyanin (PC), as a characteristic pigment, is more suitable for monitoring cyanobacterial blooms and toxic
cyanobacteria than chlorophyll-a (Chl-a). Because the absorption peak of PC is about ~620 nm, the application
of remote sensing using a wavelength range of 615–630 nm becomes very attractive for the implementation of
PC-targeted inversion algorithms. Numerous researchers have applied empirical and semi-analytical algorithms
to derive PC concentration as proxies for cyanobacterial blooms. However, in contrast to Chl-a, the remote sens-
ing estimation of PC concentration at the larger scale is still limited by the scarcity of data with sufficient spatial
and spectral resolution. Therefore, this review attempts to provide a comprehensive overview of remote sensing
techniques and retrieval algorithms as applied to the PC monitoring. The main emphasis is on the PC inversion
algorithms and their realization via the available and perspective remote sensors. Based on the above analysis
of state-of-the-art techniques and algorithms, the overall challenges and potentials of remote sensing-based
cyanobacterial PC pigment retrieval are discussed in detail.
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Introduction

The fragile balance of freshwater ecosystems is jeopardized by fresh-
water eutrophication. In particular, the latter phenomenon manifests
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itself by cyanobacterial blooms, which frequently occur in inland and
coastal waters, causing a serious hazard to the ecosystem and human
health all over the world (Kudela et al., 2015; Sivonen and Jones,
1999). Cyanobacteria are known to produce a variety of toxins (referred
to as cyanotoxins), including cytotoxins, hepatotoxins, and neurotoxins
(Pearson et al., 2016). Global warming is likely to affect the physiologi-
cal and molecular changes in cyanobacteria, which enhance the toxin
production (El-Shehawy et al., 2012). However, the lack of quantitative
surveys on cyanotoxin makes it difficult to estimate the cyanotoxin-
related potential hazards to drinking and irrigation water supplies, as
well as fishing and recreational use of surface waters worldwide. A re-
cent study has shown that cyanotoxin content could be estimated
through surrogate pigments of cyanobacteria such as chlorophyll-a
(Chl-a) and phycocyanin (PC) (Stumpf et al., 2016). Therefore, the effec-
tive and accurate monitoring of cyanobacteria blooms is necessary for
analyzing the cyanotoxin generation mechanism. Nowadays, remote
sensing has become a must-have tool for cyanobacteria monitoring at
the local and global scales, due to its cost-effectiveness, as well as tem-
porally repetitive nature of monitoring capabilities.

For remote sensing applications, a commonly used proxy for
cyanobacteria blooms is Chl-a, being the primary and dominant photo-
synthetic pigment in phytoplankton (Chorus and Bartram, 1999). The
Chl-a inversion of remote sensing is relatively mature. However, recent
findings (Ma et al., 2009a) have proved that Chl-a fails to be an accurate
indicator of cyanobacteria, due to its presence in other phytoplankton
species. In freshwater, PC is mainly associated with cyanobacteria and,
thus, can be used as an alternative marker pigment of cyanobacterial
biomass (Dekker, 1993). Earlier studies have demonstrated the poten-
tial of PC for the estimation of cyanobacteria biomass or abundance
(Brient et al., 2008). The absorption peak of PC being about 620 nm, it
can be easily detected and identified by the remote sensing reflectance
spectra range between 610 and 630 nm, forming a basis for the develop-
ment of PC-based algorithms (e.g., Simis et al., 2005; Matthews, 2011;
Ruiz-Verdú et al., 2008; Varunan and Shanmugam, 2017). However, as
compared to Chl-a, the PC retrieval is less user-friendly for measure-
ments or estimation due to the difficulty of PC extraction in the labora-
tory and its low specific absorption in inland waters. Moreover, the
large-scale PC estimation in inland waters is inhibited by the lack of
standards methods to extract PC and the applicable satellite sensors
with the suitable spectral band at 620 nm (Stumpf et al., 2016).

For a further implementation of remote sensing techniques into PC
monitoring and research, this paper presents an overview of the avail-
able state-of-the-art methods, to get a deeper insight into the problem
and derive the basis for further improvements in this domain. To this
end, a brief description of PC absorption is given, followed by a section
reviewing the PC retrieval algorithms and comparing their advantages
and drawbacks, with a final discussion of the practical PC monitoring
via the available satellite sensors.

Phycocyanin absorption properties

PC is a functional protein found in cyanobacteria with a high intra-
cellular variability. There are two PC pigments, namely Cyanophyceae
PC (C-PC) and Rhodophyceae PC (R-PC) with distinguished absorption
features. C-PC has the maximum absorption at about 620 nm, while
the R-PC absorption peak is about 550 nm (Jiang et al., 2001). Biologi-
cally, C-PC exists in the blue-green cyanobacteria group, while R-PC ap-
pears in the harmful red algae. Rhodophyceae are relatively rare in
freshwater so ereafter the abbreviation PC is used to refer to C-PC.

Light absorption features of PC make it attractive for optical remote
sensing detection. PC absorbs the orange and red light wavelengths
(between 610 and 630 nm) and emits fluorescence at about 650 nm,
depending on the community type (Dekker, 1993; Jupp et al., 1994).
PC peaks near 620 nm with a prominent shoulder (which means a
change in the derivative of a spectral function without a change in
sign) extended to the blue wavelengths (MacColl and Guard-Friar,

1983). However, the specific absorption of PC at 620 nm is lower by
about 0.075 m2 mg−1 than that of Chl-a for the range between 665
and 681 nm (0.15–0.20 m2 mg−1) (Simis et al., 2005). Consequently, a
higher concentration of PC, as compared to Chl-a, is required to get
the equivalent signal of remote sensing reflectance. The absorption of
Chl-a and other accessory pigments near 620 nm strongly affect the sig-
nal of PC retrieval due to its weak production of optical signals (Dekker,
1993; Hunter et al., 2010; Mishra et al., 2009; Simis et al., 2005, 2007).
For example, Chl-a exhibits a significant absorption shoulder at about
623 nm (Ficek et al., 2004). A broad peak of chlorophyll-b (Chl-b) is ob-
served at 650 nm and 600 nm, while the second peak of chlorophyll-c
(Chl-c) corresponds to 590 nm and 640 nm (Ficek et al., 2004;
Sathyendranath et al., 1987). Similarly, the absorption by suspended
non-algal particle and colored dissolved organic matters cannot be ig-
nored when PC concentration is quantified through the absorption or
reflectance spectra (Simis et al., 2007).

Phycocyanin concentration modeling

The elaboration of an accurate model of water quality parameter in-
version for inland waters is quite problematic (Ma et al., 2009b). As
compared to Chl-a, the inversion model of PC concentration is more
cumbersome due to the unique absorption band and low specific ab-
sorption. Up till now, researchers have developed empirical, semi-
empirical, and semi-analytical models by taking advantage of the
PC absorption feature between 615 and 630 nm (Ogashawara et al.,
2013). Most models are based on the reflectance spectral shape or
relationships between the reflectance band ratio and the PC absorp-
tion, but these models are location-specific. More detail on these
models can be found elsewhere (Ruiz-Verdú et al., 2008; Varunan
and Shanmugam, 2017), while this paper is focused on the main
algorithms of PC retrieval and the comprehensive analysis of their
advantages and drawbacks.

Empirical algorithms

Empirical models are developed based on the direct statistical rela-
tionships between the parameters obtained from remote sensing or in
situ optical data and measured PC concentration. For example, Vincent
et al. (2004) used the reflectance band ratio from the Landsat Thematic
Mapper (TM) sensor (which operated on the board of Landsats 4 and 5
from July 1982 to May 2012) to estimate PC concentrations in Lake Erie
in North America. Sun et al. (2015) developed amultivariate band-ratio
regression model to estimate the PC concentration using visible and
near-IR bands with their band ratios, and thee model performed well.
Ma et al. (2009b) elaborated a 6-term polynomial model to estimate
the PC concentration using the reflectance data of Moderate Resolution
Imaging Spectroradiometer (MODIS) onboard the Terra spacecraft.
Dash et al. (2011) quantified PC concentration using the spectral slopes
of Rrs at the 556 and 511 nm bands of the Ocean Color Monitor (OCM)
onboard the Indian Remote Sensing Satellite IRS-P4 in a small lake.
Wozniak et al. (2016) designed the multilinear regression using the
band ratio of 620/665 nm and 620/708.25 nm for OLCI radiometer and
showed its potential inmonitoring large-scale changes in PC concentra-
tion (R2 = 0.77, RMSE = 0.23).

With the development of hyperspectral sensors, empirical
models are able to focus more on the optical features of some pigments.
For the case of PC, these algorithms mainly exploit the unique absorp-
tion feature near 620 nm. Single bands (~620 nm) and band ratios
such as 620/650 nm have been used (e.g., by Dekker, 1993; Mishra
et al., 2009; Ruiz-Verdú et al., 2008; Schalles and Yacobi, 2000).
Dekker (1993) constructed a reference baseline between two
wavelengths (600 and 648 nm) for the reflectance subtraction at
624 nm (PC ∞ (R(600) + R(648))/2) − R(624) and reported its strong
correlation (R2 N 0.99) with PC concentration in turbid lakes.
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