Accepted Manuscript

Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method

Min-Gyu Lee, Jong-Won Park, Sang-Kyu Kam, Chang-Han Lee

PII:	S0045-6535(18)30922-6
DOI:	10.1016/j.chemosphere.2018.05.080
Reference:	CHEM 21412
To appear in:	Chemosphere
Received Date:	15 January 2018

Accepted Date: 13 May 2018

Please cite this article as: Min-Gyu Lee, Jong-Won Park, Sang-Kyu Kam, Chang-Han Lee, Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method, *Chemosphere* (2018), doi: 10.1016/j.chemosphere.2018.05.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method
2	Min-Gyu Lee ³ , Jong-Won Park ¹ , Sang-Kyu Kam ² , Chang-Han Lee ^{1*}
3	
4	1 Department of Environmental Administration, Catholic University of Pusan, Busan 46252, Korea
5	2 Department of Environmental Engineering, Jeju National University, Jeju 63243, Korea
6	3* Department of Chemical Engineering, Pukyong National University, Busan 48547, Korea
7	
8	Abstract
9	Na-A zeolite (Z-S1) was synthesized from scoria found on Jeju Island, Korea using the fusion/hydrothermal
10	method. The influences of NaOH/scoria ratio, SiO_2/Al_2O_3 molar ratio, and particle sizes on the synthesis of
11	zeolite were studied by analyzing crystals morphology and crystallinity. According to XRD analysis, it was
12	confirmed that the zeolitic materials were synthesized in the range of NaOH/Scoria ratio from 0.6 to 2.4. As the
13	ratio of NaOH/Scoria increased from 0.6 to 1.2, the crystallinity of Z-S1 gradually increased from 8.85% to
14	57.53%, then became almost constant at 61.80% as the ratio of NaOH/Scoria exceeded 1.8. The particle size of
15	the zeolite crystals tended to decrease with increasing the alkali content of NaOH/Scoria from 0.6 to 1.8. It was
16	possible to synthesize tine crystals having the particle size about 1.0 μ m or less at a NaOH/Scoria ratio of 1.8.
17	This study has shown that the fusion/hydrothermal method is a very effective technique for synthesizing Z-S1
18	from scoria and provides a potential application for obtaining commercial products from natural materials.
19	
20	Keywords: Crystallization, Zeolite, Scoria, Fusion, Hydrothermal
21	
22	
23	Corresponding Author: Chang-Han Lee, Department of Environmental Administration,
24	Catholic University of Pusan, Busan 46252, Korea
25	Phone: +82-51-510-0624
26	E-mail: chlee@cup.ac.kr

Download English Version:

https://daneshyari.com/en/article/8851019

Download Persian Version:

https://daneshyari.com/article/8851019

Daneshyari.com