Accepted Manuscript

Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: a five-year field case study

J.A. Acosta, A. Abbaspour, G.R. Martínez, S. Martínez-Martínez, R. Zornoza, M. Gabarrón, A. Faz

PII:	S0045-6535(18)30669-6
DOI:	10.1016/j.chemosphere.2018.04.027
Reference:	CHEM 21175
To appear in:	Chemosphere
Received Date:	05 February 2018
Revised Date:	22 March 2018
Accepted Date:	04 April 2018

Please cite this article as: J.A. Acosta, A. Abbaspour, G.R. Martínez, S. Martínez-Martínez, R. Zornoza, M. Gabarrón, A. Faz, Phytoremediation of mine tailings with Atriplex halimus and organic /inorganic amendments: a five-year field case study, *Chemosphere* (2018), doi: 10.1016/j. chemosphere.2018.04.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic
2	amendments: a five-year field case study
3	Acosta ^{1*} J.A., Abbaspour ² A., Martínez ¹ G.R., Martínez-Martínez ¹ S., Zornoza ¹ R., Gabarrón ¹ M., Faz ¹ A.
4	¹ Sustainable use, management and reclamation of soil and water research group, Universidad Politécnica de
5	Cartagena. Paseo Alfonso XIII 48, 30203. Cartagena (Spain).*E-mail: ja.acosta@upct.es
6	² Department of Soil and Water, Faculty of Agriculture, Shahrood University of Technology, Semnan
7	province, Iran.
8	
9	Abstract
10	Mine tailings have adverse chemical and physical conditions, including high concentrations of
11	metals and salts, low organic matter content, and unbalanced rates of nutrients which limit the
12	development of vegetation. A large scale field experiment was conducted to reclaim a tailing pond
13	by triggering the growth of native species by spontaneous colonization by tilling (TL) the tailing
14	pond surface and using marble waste (CaCO3; MW), pig slurry (PS) and their combination
15	(MW+PS) as soil amendments. Soil physicochemical properties and water and DTPA extractable
16	metal concentrations of bulk and rhizosphere soils were analyzed after five year from the
17	application of the treatments. In addition, plants of Atriplex halimus from each treatment were
18	collected and metals in roots, leaves and stems analyzed. Before amendments application, the
19	studied pond showed a neutral pH, high salinity and a moderate organic carbon content. After five
20	years, the pH value was significantly increased only in MW plot. The results showed significant
21	increases of DTPA-extractable Zn in MW and MW+PS plots, Pb in all treatments except MW plot,
22	Cd only in PS plot, and Cu only in MW+PS plot. A. halimus was the most dominant species,
23	growing spontaneously in all plots, with lower vegetation cover in CT and MW plots, 6% and 2%

Download English Version:

https://daneshyari.com/en/article/8851196

Download Persian Version:

https://daneshyari.com/article/8851196

Daneshyari.com