Accepted Manuscript

Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of highstrength anaerobic digestion effluent

Aaron A. Forbis-Stokes, Lucas Rocha-Melogno, Marc A. Deshusses

PII: S0045-6535(18)30554-X

DOI: 10.1016/j.chemosphere.2018.03.137

Reference: CHEM 21081

To appear in: ECSN

Received Date: 10 October 2017

Revised Date: 14 March 2018

Accepted Date: 20 March 2018

Please cite this article as: Forbis-Stokes, A.A., Rocha-Melogno, L., Deshusses, M.A., Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of high-strength anaerobic digestion effluent, *Chemosphere* (2018), doi: 10.1016/j.chemosphere.2018.03.137.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

<u>M</u>

ACCEPTED MANUSCRIPT

Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of high-

1

2	strength anaerobic digestion effluent
3	Aaron A. Forbis-Stokes ^{a,b} , Lucas Rocha-Melogno ^a , Marc A. Deshusses ^{a,b*}
4	^a Department of Civil & Environmental Engineering, Duke University, Durham, NC
5	^b Duke Global Health Institute, Duke University, Durham, NC
6	*Corresponding author: Department of Civil & Environmental Engineering, Duke University,
7	127C Hudson Hall, Box 90287, Durham, NC 27708. Phone: (919) 660-5480; Fax: (919) 660-
8	5219; emails: marc.deshusses@duke.edu, aaron.forbis-stokes@duke.edu
9	
10	Abstract
11	The treatment of high-strength anaerobic digester effluent in laboratory-scale trickling filters for
12	nitrification and then anaerobic filters for denitrification is reported. Five media types were
13	investigated in the trickling filters: biochar, granular activated carbon (GAC), zeolite, Pall rings,
14	and gravel. Three media were tested in five denitrifying filters: sand (S), bamboo wood chips
15	(B), eucalyptus wood chips (E), bamboo with sand (B+S), and eucalyptus with sand (E+S). The
16	different wood chips served as a supplemental electron donor for denitrification. From six
17	months of operation, biochar, GAC, zeolite, Pall rings, and gravel media had turbidity (NTU)
18	removal efficiencies of 90, 91, 77, 74, and 74%, respectively, and ammonia removal efficiencies
19	of 83, 87, 85, 30, and 80%, respectively, which was primarily by nitrification to nitrate. For the
20	anaerobic filters, S, B, B+S, E, and E+S had nitrate removal efficiencies of 30, 66, 53, 35, and
21	35%, and turbidity removal efficiencies of 88, 89, 84, 89, and 88%, respectively. Biochar and
22	bamboo were selected as the best combination treatment. Based on an average initial influent of
23	600 mg NH ₃ -N L^{-1} , 50 mg NO ₃ -N L^{-1} , and 980 NTU, the biochar filter's effluent would be 97
24	mg NH ₃ -N L^{-1} , 475 mg NO ₃ -N L^{-1} , and 120 NTU. The bamboo filter's final effluent would be 82

Download English Version:

https://daneshyari.com/en/article/8851205

Download Persian Version:

https://daneshyari.com/article/8851205

Daneshyari.com