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A B S T R A C T

Persistent organic products are compounds used for various purposes, such as personal care products, surfac-
tants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly in-
troduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified
as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods
such as Quantitative Structure–Activity Relationships (QSARs) have been used to develop important models for
prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to
build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of
compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial
Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Qcv

2) show the
following values: Qcv

2 = 0.793, coefficient of determination (R2) = 0.823, explained variance in external
prediction (Qext

2) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as
already mentioned in previously published studies but other physicochemical properties combined contribute to
the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the
compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This
information from the model can be useful in predicting so as to minimize the toxicity of organic compounds.

1. Introduction

Organic compounds represent a wide range of chemicals with dif-
ferent physicochemical properties, whether from synthetic or natural
sources. These include persistent organic products, which are com-
pounds used for various purposes, such as personal care products,
surfactants, dyes, industrial additives, food, pesticides and pharma-
ceuticals (Isidori et al., 2016; Ribeiro et al., 2015; Jurado et al., 2012;
Tamura et al., 2017). These substances are constantly introduced into
the environment, originating mainly from industrial, domestic, hospital
and surface effluent releases from agricultural and livestock areas
(Esteban et al., 2014; Mousel et al., 2017; Serra-Roig et al., 2016). Its
occurrence is widely detected in different aquatic matrices, surface
water, groundwater and oceans (Busch et al., 2016; Gros et al., 2012,
2016). Many of these pollutants are difficult to degrade, having high
chemical stability. Exposure of chemical contaminants to the aquatic
environment poses serious threats to the preservation of environmental

quality, as well as issues related to human health and is recognized by
experts from several countries as a major global problem (Bourgin
et al., 2013).

Adverse effects have already been identified and continue to be
related to the presence of pollutants in water, such as inhibition of
neurotransmitters (de Oliveira et al., 2016), mutagenicity (Lutterbeck
et al., 2015), carcinogenicity, biomagnification in marine trophic nets
(Xue et al., 2017), phytotoxicity (Richter et al., 2016), feminization of
fish (Hicks et al., 2017) and development of bacteria resistant to anti-
biotics (Miranda et al., 2016).

Studies developed in toxicology have used physicochemical in-
formation aiming to classify chemicals by the common mode of action
(MoA) to understand better the interaction by which a chemical can
cause an adverse effect (Nendza et al., 2014). The MoA can be defined
as a common set of physiological and behavioral signs produced in an
exposed organism that characterize a type of adverse biological re-
sponse (Borgert et al., 2004; Schlosser and Bogdanffy, 1999; Rand et al.,
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1995).
According to Verhaar (1992), the MoA can be categorized into four

classes based on identification of chemical groups and/or structural
fragment: MoA 1 (nonpolar narcosis)—it is also called baseline toxicity
or minimum toxicity and comprises nonreactive chemicals; MoA 2
(polar narcosis) are classified as ionic and inert organic compounds,
which present low toxicity and these chemicals are usually character-
ized as possessing hydrogen-bond donor acidity; MoA 3 (reactive che-
micals)—applies to chemicals that react unselectively with certain
chemical structures commonly found in biomolecules or chemicals that
are metabolized and MoA 4 (specifically acting chemicals)—inclusion
in this class must, and should, be based on specific knowledge on mode
of toxic action of groups of chemicals. Compounds that cannot be
classified as belonging to classes 1, 2 or 3 and that are not known to act
by a specific mechanism can only be classified as “not possible to
classify according to these rules” (Verhaar et al., 1992, 2000).

The use of in silico methods, such as (Quantitative) Structure–Activity
Relationships [(Q)SARs], has become increasingly helpful in under-
standing many aspects of chemical–biological interactions in drug and
pesticide research, as well as in the areas of toxicology (Hansch and
Verma, 2009). (Q)SAR is based on quantitative models, derived from
application of mathematical and statistical tools, resulting in correla-
tion between physicochemical properties and biological activities (e.g.,
toxicity) from a variety of chemical classes, numerically encoded by one
or more molecular descriptors that are used to predict the properties of
interest (Consonni et al., 2002; Dearden, 2016; Gasteiger, 2016; OECD,
2014; Todeschini and Consonni, 2009). This method provides an im-
portant and useful alternative means of testing; it can be employed to
deal with large quantities of data, for assessing the potential hazards of
chemicals, as well as to avoid expensive and time-consuming experi-
ments and is an important alternative to reduce animal experimental
testing (Chen et al., 2015; Gramatica et al., 2016). QSAR models have
been introduced in chemical safety assessment and regulatory decision
support, required by European Legislation on Registration, Evaluation,
Authorization, and restriction of CHemicals (REACH) and by the United
States Environmental Protection Agency (US EPA), for comprehensive
protection of public health and the environment (Delgado et al., 2012;
ECHA, 2014, US EPA, 2016).

Recent QSAR models have been proposed for (eco)toxicity predic-
tion of chemical substances, including fish toxicity studies (Toropova
et al., 2012; Burden et al., 2016; Cassani et al., 2013; Cassotti et al.,
2016; Gramatica et al., 2016; Kluver et al., 2016; Levet et al., 2013;
Nendza et al., 2017; Singh et al., 2014; Schüürmann et al., 2011; Tugcu
et al., 2012). Singh et al. (2013) constructed a probability function-
based neural networks model for predicting the toxicity of diverse
chemical compounds. The models showed good predictive and gen-
eralization abilities for predicting toxicities. Another study demon-
strated a classification scheme to discriminate between baseline and
excess toxicants for replacing fish acute toxicity tests with QSAR pre-
dictions for baseline toxicants (Nendza et al., 2017). Burden et al.
(2016) reported a predictive study to evaluate the fish acute toxicity of
metabolites derived from plant protection product active substances.
The work demonstrated a high correlation of QSAR-predicted versus
experimentally derived fish acute toxicity values.

The aim of this study was to build a QSAR model-based set of the-
oretical molecular descriptors using acute fish toxicity values for
compounds defined as MoA 1 to identify the molecular properties re-
lated to this mechanism and predict the fish toxicity of untested com-
pounds. The QSAR model was validated according to the principles of
validation for regulatory purposes and the acceptability of (Q)SARs,
proposed by the Organization for Economic Cooperation and
Development–OECD (OECD, 2007).

2. Methods

2.1. Data collection

For the development of QSAR models, the dataset comprised 61
organic compounds with experimental values on acute fish toxicity. The
dataset was split prior to model development into training and test
subsets. The experimental data for the training used in the present study
were constituted by over 36 compounds (Tables S1 and S2), obtained
from the database reported in the literature containing 86 different
experimental toxicological values of compounds classified in MoA 1
(nonpolar narcosis), all information of duplicates being used (Thomas
et al., 2015). The predictivity of the model was determined by an ex-
ternal validation based on the predictions performed for the in-
dependent test set with 25 individuals and 25 unique experimental
values of fish toxicity with the aim of assessing the robustness of the
developed models (Konemann, 1981; Konemann and Musch, 1981).
The chemicals included in the prediction sets were not used in the
model development step to select the modeling descriptors. The ex-
perimental values measured for EC50 (effective concentration) (mol/L)
were converted to a molar basis and then the logarithmically trans-
formed data [–log EC50 = pEC50] were used as response variables.

2.2. Molecular descriptors

To generate the molecular descriptors, the individual structures
were defined as Simplified Molecular Line Entry System (SMILES) codes.
The chemical structures were converted into a.mol file (MDL format)
and used as input in the program for calculation. The Standardizer tool
was used to convert the chemical structures into customized canonical
representations, [JChem 16.1.11.0, 2016), ChemAxon (http://www.
chemaxon.com)], ensuring comparability of all molecular representa-
tions; stripping salts, adding explicit hydrogens and aromatizing were
the standardizations applied to every structure. This tool also was used
to generate three-dimensional (3D) structures.

Using the VolSurf+ program v. 1.0.7 (http://www.moldiscovery.
com), 3D structures of the compounds were used as input data and were
subjected to molecular interaction fields (MIFs) to generate descriptors
using the following probes: N1 (amide nitrogen), O (carbonyl oxygen),
H2O (water probe) and DRY (hydrophobic probe) (Cruciani et al.,
2000). Additional non-MIF-derived descriptors were generated to
create a total of 128 descriptors, including descriptors that quantify
molecular size, shape, hydrophilic and hydrophobic regions, interaction
energy moments, capacity factors, amphiphilic moments, hydro-
phobic–lipophilic balance and other descriptors. These descriptors have
been selected for the present study because they are simple to use and
make it easy to interpret and understand the mechanism of action and/
or physical meaning. Volsurf descriptors have been previously used to
build a QSSR (Quantitative Structure–Sorption Relationships) model to
predict Koc values for the chemical structures of the active ingredients
found in pesticides (Soares et al., 2014).

2.3. Statistical analysis and model validation

QSAR models were developed using Partial Least Squares (PLS)
included in the VolSurf+ software. PLS is a statistical procedure based
on linear regression that allows extracting and rationalizing the mul-
tivariate information, to explain the maximum correlation between the
descriptors matrix X and response matrix Y by calculating a new set of
orthogonal variables, therefore uncorrelated, called latent variables
(LVs). This method is suitable when the number of variables is greater
than the number of samples and there is multicollinearity among the
independent variables (Baroni et al., 1993; Geladi and Kowalski, 1986;
Wold et al., 1984, 2001). The autoscaling preprocess, in which the
mean is subtracted from the variable values and the resultant values are
divided by the standard deviation, for all independent variables was
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