
Contents lists available at ScienceDirect

Ecotoxicology and Environmental Safety

journal homepage: www.elsevier.com/locate/ecoenv

In silico study toward the identification of new and safe potential inhibitors
of photosynthetic electron transport

Taisa Pereira Piacentini Ribeiroa, Flávia Giovana Manarinb, Eduardo Borges de Meloa,⁎

a Dept. of Pharmacy, Western Paraná State University, UNIOESTE, Cascavel, PR, Brazil
bDept. of Chemistry, Western Paraná State University, UNIOESTE, Toledo, PR, Brazil

A R T I C L E I N F O

Keywords:
Quantitative structure-activity relationship
Virtual screening
In silico toxicology
New herbicides
Quinolines
Naphthalenes

A B S T R A C T

To address the rising global demand for food, it is necessary to search for new herbicides that can control
resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict com-
pounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes),
which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was
approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64
compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were
shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested
using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good
predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and
the hit compounds found by virtual screening are novel bicyclic scaffolds of this class.

1. Introduction

Agricultural pests and weeds interfere with crop yields. When used
in no-tillage practices, chemical agents with herbicidal activity con-
tribute to reduction in soil erosion and increase in nutrient flow, and
assist in water conservation. The use of chemical agents requires less
labor than mechanical control methods. Therefore, there has been an
increase in the annual growth rate of global herbicide market (Green,
2014). However, a highly intensive nature in the use of these substances
resulted in the widespread pollution of pesticides in the environment.
Added to this is the fact that pesticides have been shown to cause
various kinds of organ toxicities, including some types of cancers (Wasi
et al., 2013).

Among herbicidal agents, those that act as photosystem II (PSII)
inhibitors are the most commonly used agents in agriculture. These
agents inhibit the photochemical phase of photosynthesis and conse-
quently NADPH and ATP production, leading to the interruption of
carbon fixation by plants. Because electrons cannot store chemical en-
ergy, they form free radicals, which lead to lipid peroxidation of the
membrane, resulting in necrosis and death of weeds (Oliveira et al.,
2011; Hess, 2000). Several herbicides that act by this mechanism, for
instance, atrazine, diuron, and metribuzin, are currently available.
However, environmental and safety issues, which have resulted in the
discontinuation of some herbicides, and the evolution of herbicide-

resistant weeds, combined with the fact that no new herbicides ex-
hibiting beneficial effects via new mechanisms of action have been
available in the last few decades, have led to the need for development
of new chemical agents as herbicides (Duke, 2012).

In medicinal chemistry, the concept of privileged structures refers to
the idea that certain structural features produce biological effects more
often than others (Polanski et al., 2012). These structures include qui-
noline (Hussaini, 2016) and naphthalene (Horton et al., 2003) scaffolds.
Computer-aided molecular design tools are currently very important in
the rational designing of new biologically active chemicals and can be
used for the development of new molecules based on privileged struc-
tures.

Among these tools, quantitative structure-activity relationship
(QSAR) model describes how a given biological activity can vary as a
function of molecular structure in a set of chemical compounds
(Csizmadia and Enriz, 2000). Although these tools are widely used in
drug development and in several studies on environmental toxicology,
they are still little explored in the development of new herbicidal
agents. QSAR models can also be used to predict the response of new
herbicide candidates (González et al., 2003; Zuo et al., 2016; Sharma,
2016). Therefore, we performed a multivariate QSAR study based on a
set of 44 derivatives (Musiol et al., 2007; Gonec et al., 2013), with the
objective of obtaining models that can be helpful as support tools for
designing new PSII inhibitors. A 2D similarity-based virtual screening
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was also performed, with the objective of identifying a related scaffold
for the future synthesis of new derivatives.

2. Methods

2.1. Data set

The dataset for this study consisted of 44 selected derivatives, in-
cluding 26 quinolines and 18 naphthalenes (Fig. 1 and Supplementary
material, Table S1), capable of 50% inhibition of photosynthesis in
spinach chloroplasts (IC50, in µmol/L) (Musiol et al., 2007; Gonec et al.,
2013). The observed values were converted into their corresponding
–logIC50 (or pIC50). The activities were distributed within the range of
2.329 log units (pIC50 from 2.796 to 5.125). For the validation step, a
training set consisting of 37 compounds and a test set consisting of
seven compounds were used. The test set was selected to adequately
represent the structural variability and biological activity range of the
dataset.

The structures of the data-set compounds were built using
HyperChem 7 (Hyper Co.) from crystallographic structures (CIF codes:
2201734, 7213893, 2208696, and 2218249) obtained from the
Crystallography Open Database (Gražulis et al., 2012) (http://www.
crystallography.net/cod). All structures were optimized using mole-
cular mechanics and quantum mechanics strategies until the energy
obtained no longer varied, indicating a possible minimum energy
structure. The compounds were then optimized using quantum me-
chanics in Gaussian 09 (http://www.gaussian.com) by applying the
Austin Model 1 (AM1) and Hartree-Fock (HF/6-31Gd,p). In the final
step, density functional theory (DFT) (B3LYP/6–311 G++d,p) was
used.

2.2. Molecular descriptors

The following electronic descriptors were obtained in the
GaussView 5 program (http://www.gaussian.com): Mulliken's partial
charges of structure common to all derivatives, total energy (ET), total
dipole moment (D) in x (DX), y (DY), and z (DZ) axes, and the energies of
the two highest occupied molecular orbitals (EHOMO-1 and EHOMO) and
two lowest unoccupied molecular orbitals (ELUMO and ELUMO+1). In
addition, electrophilicity index (ω), electrophilicity index in the ground
state (ωgs), molecular electronegativity (c), molecular hardness (h) and
softness (S), ionization potential (IP), activation energy index (AEI),
electronic affinity (EA), difference between EHOMO and ELUMO (GAP),
and the fraction of EHOMO/ELUMO energy (f(H/L)) were calculated. These
descriptors were obtained using the equations described by Todeschini
and Consonni (2009). Moreover, 4855 molecular descriptors (divided
into constitutional, topological, geometric, molecular, and mixed) were
calculated in the Dragon 6 program (http://www.talete.mi.it/index.
htm).

Next, a matrix with all descriptors was treated with variable re-
duction filters (also in Dragon 6) to eliminate descriptors that did not
present information relevant to the model. The filters were used to
eliminate: (i) descriptors with constant values; (ii) descriptors with
constant and near-constant variables; (iii) descriptors with a standard
deviation of less than 0.001; (iv) descriptors with at least one missing

value; and (v) descriptors with correlation to another descriptor larger
than or equal to 0.90.

A manual reduction was also performed to remove variables that
still showed minor variation. The final reduction step was performed
using the QSAR modeling software LQTA-QSAR (Martins and Ferreira,
2009) (http://lqta.iqm.unicamp.br), wherein descriptors that had ab-
solute correlation with biological activity (|r|) below 0.2 and did not
have relevant information for model construction were excluded. In the
end, a matrix with 337 descriptors was obtained.

2.3. Variable selection and construction of models

In QSAR study, the variable selection process is usually conducted in
an automated manner owing to the large number of descriptors avail-
able. This was done in the QSAR modeling software using ordered
predictors selection (OPS) (Teófilo et al., 2009). This method uses
partial least squares regression (PLS) (Liu and Long, 2009) to assign
importance to each descriptor based on three possible informative
vectors: correlation vector, regression vector, and the product between
them. The final models were also constructed using PLS regression.

2.4. Validation of models

Validation methods are used to check the quality of QSAR models,
thus providing a measure of their capability to perform reliable pre-
dictions (Gaudio and Zandonade, 2001). The quality of the obtained
model was tested through two validation steps: internal and external.
To be internally validated, the model must present a good degree of fit,
significance, and predictability. These criteria can be evaluated
through: (i) coefficient of determination (R2), which must be greater
than 0.6 (i.e., must be able to explain at least 60% of variability of the
observed values of biological activity); (ii) F test—for correlating the
variability explained by the model (R2) and the variability that remains
unexplained (root mean square error of calibration, RMSEC), which
should have the highest possible values in relation to a tabulated cri-
tical value; (iii) leave-one-out (LOO) cross-validation—a procedure by
which a compound is excluded from the model. The model is then re-
constructed to calculate the value of the excluded object to obtain the
coefficient of determination of cross-validation (Q2

LOO), which must be
able to predict at least 50% of variability of the observed values of
biological activity; (iv) RmSquare metrics [average r2m(LOO)-scaled and
Δr2m(LOO)-scaled] of cross-validation that aids in confirming the pre-
dictability expressed by Q2

LOO, because in some cases, a large value for
this parameter does not necessarily indicate a good predictability. The
rm2 metric is the result of a correlation between observed and predicted
values without (r2) and with (r20) the prediction values centered on the
origin. The same criterion can be applied in the external validation step;
(v) y-randomization, which aims to evaluate whether the variabilities
explained and predicted by the model are due to chance. In this process,
the significance of R2 and Q2

LOO values is estimated by the development
of parallel models, maintaining the values of original descriptors (ma-
trix X), and scrambling the values of the dependent variable (vector y)
between the samples. These new models may be necessarily worse or
there is a possibility that the data fit is mainly due to spurious corre-
lations. It is expected that the values of these two parameters together
will be considerably lower than the original values (without permuta-
tion), and this quality is expressed by the values of the intercepts of the
new models (Q2 < 0.05 and R2 < 0.3) (Kiralj and Ferreira, 2009); and
(vi) evaluation of the robustness of the model, which aims to verify the
ability of the model to resist small and deliberate variations. For this
purpose, leave-N-out (LNO) cross-validation is used, which aims to
evaluate whether the model has the capacity to resist small and delib-
erate variations in its composition (Kiralj and Ferreira, 2009). The
commonly used N value is 25–30% of the total number of training set
samples (Ferreira et al., 2002; Lang et al., 2014; Roy and Mitra, 2012;
Golbraikh and Tropsha, 2002).

Fig. 1. Basic structure of quinolines and naphthalenes used as data set.
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